A causal role for right frontopolar cortex in directed, but not random, exploration

  1. Wojciech K Zajkowski
  2. Malgorzata Kossut
  3. Robert C Wilson  Is a corresponding author
  1. University of Social Sciences and Humanities, Poland
  2. Nencki Institute, Poland

Abstract

The explore-exploit dilemma occurs anytime we must choose between exploring unknown options for information and exploiting known resources for reward. Previous work suggests that people use two different strategies to solve the explore-exploit dilemma: directed exploration, driven by information seeking, and random exploration, driven by decision noise. Here, we show that these two strategies rely on different neural systems. Using transcranial magnetic stimulation to inhibit the right frontopolar cortex, we were able to selectively inhibit directed exploration while leaving random exploration intact. This suggests a causal role for right frontopolar cortex in directed, but not random, exploration and that directed and random exploration rely on (at least partially) dissociable neural systems.

Data availability

The following data sets were generated

Article and author information

Author details

  1. Wojciech K Zajkowski

    University of Social Sciences and Humanities, Warszawa, Poland
    Competing interests
    The authors declare that no competing interests exist.
  2. Malgorzata Kossut

    Departament of Psychology, University of Social Sciences and Humanities, Warsaw, Poland
    Competing interests
    The authors declare that no competing interests exist.
  3. Robert C Wilson

    Nencki Institute, Warsaw, Poland
    For correspondence
    bob@arizona.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-2963-2971

Funding

No external funding was received for this work.

Reviewing Editor

  1. Michael J Frank, Brown University, United States

Ethics

Human subjects: All participants were informed about potential risks connected to TMS and signed a written consent. The study was approved by University of Social Sciences and Humanities ethics committee.

Version history

  1. Received: April 4, 2017
  2. Accepted: September 14, 2017
  3. Accepted Manuscript published: September 15, 2017 (version 1)
  4. Version of Record published: October 4, 2017 (version 2)

Copyright

© 2017, Zajkowski et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,385
    views
  • 441
    downloads
  • 97
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Wojciech K Zajkowski
  2. Malgorzata Kossut
  3. Robert C Wilson
(2017)
A causal role for right frontopolar cortex in directed, but not random, exploration
eLife 6:e27430.
https://doi.org/10.7554/eLife.27430

Share this article

https://doi.org/10.7554/eLife.27430

Further reading

    1. Genetics and Genomics
    2. Neuroscience
    Kenneth Chiou, Noah Snyder-Mackler
    Insight

    Single-cell RNA sequencing reveals the extent to which marmosets carry genetically distinct cells from their siblings.

    1. Neuroscience
    Flavio J Schmidig, Simon Ruch, Katharina Henke
    Research Article

    We are unresponsive during slow-wave sleep but continue monitoring external events for survival. Our brain wakens us when danger is imminent. If events are non-threatening, our brain might store them for later consideration to improve decision-making. To test this hypothesis, we examined whether novel vocabulary consisting of simultaneously played pseudowords and translation words are encoded/stored during sleep, and which neural-electrical events facilitate encoding/storage. An algorithm for brain-state-dependent stimulation selectively targeted word pairs to slow-wave peaks or troughs. Retrieval tests were given 12 and 36 hr later. These tests required decisions regarding the semantic category of previously sleep-played pseudowords. The sleep-played vocabulary influenced awake decision-making 36 hr later, if targeted to troughs. The words’ linguistic processing raised neural complexity. The words’ semantic-associative encoding was supported by increased theta power during the ensuing peak. Fast-spindle power ramped up during a second peak likely aiding consolidation. Hence, new vocabulary played during slow-wave sleep was stored and influenced decision-making days later.