Structure and in situ organisation of the Pyrococcus furiosus archaellum machinery

  1. Bertram Daum  Is a corresponding author
  2. Janet Vonck
  3. Annett Bellack
  4. Paushali Chaudhury
  5. Robert Reichelt
  6. Sonja V Albers
  7. Reinhard Rachel
  8. Werner Kühlbrandt
  1. Max Planck Institute of Biophysics, Germany
  2. University of Regensburg, Germany
  3. University of Freiburg, Germany

Abstract

The archaellum is the macromolecular machinery that archaea use for propulsion or surface adhesion, enabling them to proliferate and invade new territories. The molecular composition of the archaellum and of the motor that drives it appears to be entirely distinct from that of the functionally equivalent bacterial flagellum and flagellar motor. Yet, the structure of the archaellum machinery is scarcely known. Using combined modes of electron cryo-microscopy (cryoEM), we have solved the structure of the Pyrococcus furiosus archaellum filament at 4.2 Å resolution and visualise the architecture and organisation of its motor complex in situ. This allows us to build a structural model combining the archaellum and its motor complex, paving the way to a molecular understanding of archaeal swimming motion.

Article and author information

Author details

  1. Bertram Daum

    Max Planck Institute of Biophysics, Frankfurt, Germany
    For correspondence
    b.daum2@exeter.ac.uk
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-3767-264X
  2. Janet Vonck

    Max Planck Institute of Biophysics, Frankfurt, Germany
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-5659-8863
  3. Annett Bellack

    Institute of Microbiology and Archaea Centre, University of Regensburg, Regensburg, Germany
    Competing interests
    No competing interests declared.
  4. Paushali Chaudhury

    Institute of Biology II, Molecular Biology of Archaea, University of Freiburg, Freiburg, Germany
    Competing interests
    No competing interests declared.
  5. Robert Reichelt

    Institute of Microbiology and Archaea Centre, University of Regensburg, Regensburg, Germany
    Competing interests
    No competing interests declared.
  6. Sonja V Albers

    Institute of Biology II, Molecular Biology of Archaea, University of Freiburg, Freiburg, Germany
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-2459-2226
  7. Reinhard Rachel

    Institute of Microbiology and Archaea Centre, University of Regensburg, Regensburg, Germany
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-6367-1221
  8. Werner Kühlbrandt

    Max Planck Institute of Biophysics, Frankfurt, Germany
    Competing interests
    Werner Kühlbrandt, Reviewing editor, eLife.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-2013-4810

Funding

Max-Planck-Gesellschaft (Open-access funding)

  • Janet Vonck
  • Werner Kühlbrandt

European Commission (Archaellum Project ID: 311523)

  • Paushali Chaudhury
  • Sonja V Albers

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2017, Daum et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 4,764
    views
  • 851
    downloads
  • 71
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Bertram Daum
  2. Janet Vonck
  3. Annett Bellack
  4. Paushali Chaudhury
  5. Robert Reichelt
  6. Sonja V Albers
  7. Reinhard Rachel
  8. Werner Kühlbrandt
(2017)
Structure and in situ organisation of the Pyrococcus furiosus archaellum machinery
eLife 6:e27470.
https://doi.org/10.7554/eLife.27470

Share this article

https://doi.org/10.7554/eLife.27470

Further reading

    1. Structural Biology and Molecular Biophysics
    Bradley P Clarke, Alexia E Angelos ... Yi Ren
    Research Article

    In eukaryotes, RNAs transcribed by RNA Pol II are modified at the 5′ end with a 7-methylguanosine (m7G) cap, which is recognized by the nuclear cap binding complex (CBC). The CBC plays multiple important roles in mRNA metabolism, including transcription, splicing, polyadenylation, and export. It promotes mRNA export through direct interaction with a key mRNA export factor, ALYREF, which in turn links the TRanscription and EXport (TREX) complex to the 5′ end of mRNA. However, the molecular mechanism for CBC-mediated recruitment of the mRNA export machinery is not well understood. Here, we present the first structure of the CBC in complex with an mRNA export factor, ALYREF. The cryo-EM structure of CBC-ALYREF reveals that the RRM domain of ALYREF makes direct contact with both the NCBP1 and NCBP2 subunits of the CBC. Comparing CBC-ALYREF with other cellular complexes containing CBC and/or ALYREF components provides insights into the coordinated events during mRNA transcription, splicing, and export.

    1. Structural Biology and Molecular Biophysics
    Julia Belyaeva, Matthias Elgeti
    Review Article

    Under physiological conditions, proteins continuously undergo structural fluctuations on different timescales. Some conformations are only sparsely populated, but still play a key role in protein function. Thus, meaningful structure–function frameworks must include structural ensembles rather than only the most populated protein conformations. To detail protein plasticity, modern structural biology combines complementary experimental and computational approaches. In this review, we survey available computational approaches that integrate sparse experimental data from electron paramagnetic resonance spectroscopy with molecular modeling techniques to derive all-atom structural models of rare protein conformations. We also propose strategies to increase the reliability and improve efficiency using deep learning approaches, thus advancing the field of integrative structural biology.