Structure and in situ organisation of the Pyrococcus furiosus archaellum machinery

  1. Bertram Daum  Is a corresponding author
  2. Janet Vonck
  3. Annett Bellack
  4. Paushali Chaudhury
  5. Robert Reichelt
  6. Sonja V Albers
  7. Reinhard Rachel
  8. Werner Kühlbrandt
  1. Max Planck Institute of Biophysics, Germany
  2. University of Regensburg, Germany
  3. University of Freiburg, Germany

Abstract

The archaellum is the macromolecular machinery that archaea use for propulsion or surface adhesion, enabling them to proliferate and invade new territories. The molecular composition of the archaellum and of the motor that drives it appears to be entirely distinct from that of the functionally equivalent bacterial flagellum and flagellar motor. Yet, the structure of the archaellum machinery is scarcely known. Using combined modes of electron cryo-microscopy (cryoEM), we have solved the structure of the Pyrococcus furiosus archaellum filament at 4.2 Å resolution and visualise the architecture and organisation of its motor complex in situ. This allows us to build a structural model combining the archaellum and its motor complex, paving the way to a molecular understanding of archaeal swimming motion.

Article and author information

Author details

  1. Bertram Daum

    Max Planck Institute of Biophysics, Frankfurt, Germany
    For correspondence
    b.daum2@exeter.ac.uk
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-3767-264X
  2. Janet Vonck

    Max Planck Institute of Biophysics, Frankfurt, Germany
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-5659-8863
  3. Annett Bellack

    Institute of Microbiology and Archaea Centre, University of Regensburg, Regensburg, Germany
    Competing interests
    No competing interests declared.
  4. Paushali Chaudhury

    Institute of Biology II, Molecular Biology of Archaea, University of Freiburg, Freiburg, Germany
    Competing interests
    No competing interests declared.
  5. Robert Reichelt

    Institute of Microbiology and Archaea Centre, University of Regensburg, Regensburg, Germany
    Competing interests
    No competing interests declared.
  6. Sonja V Albers

    Institute of Biology II, Molecular Biology of Archaea, University of Freiburg, Freiburg, Germany
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-2459-2226
  7. Reinhard Rachel

    Institute of Microbiology and Archaea Centre, University of Regensburg, Regensburg, Germany
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-6367-1221
  8. Werner Kühlbrandt

    Max Planck Institute of Biophysics, Frankfurt, Germany
    Competing interests
    Werner Kühlbrandt, Reviewing editor, eLife.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-2013-4810

Funding

Max-Planck-Gesellschaft (Open-access funding)

  • Janet Vonck
  • Werner Kühlbrandt

European Commission (Archaellum Project ID: 311523)

  • Paushali Chaudhury
  • Sonja V Albers

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Edward H Egelman, University of Virginia, United States

Version history

  1. Received: April 6, 2017
  2. Accepted: June 26, 2017
  3. Accepted Manuscript published: June 27, 2017 (version 1)
  4. Accepted Manuscript updated: June 29, 2017 (version 2)
  5. Accepted Manuscript updated: June 29, 2017 (version 3)
  6. Version of Record published: July 19, 2017 (version 4)

Copyright

© 2017, Daum et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 4,656
    Page views
  • 833
    Downloads
  • 52
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, Scopus, PubMed Central.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Bertram Daum
  2. Janet Vonck
  3. Annett Bellack
  4. Paushali Chaudhury
  5. Robert Reichelt
  6. Sonja V Albers
  7. Reinhard Rachel
  8. Werner Kühlbrandt
(2017)
Structure and in situ organisation of the Pyrococcus furiosus archaellum machinery
eLife 6:e27470.
https://doi.org/10.7554/eLife.27470

Share this article

https://doi.org/10.7554/eLife.27470

Further reading

    1. Structural Biology and Molecular Biophysics
    Sebastian Jojoa-Cruz, Adrienne E Dubin ... Andrew B Ward
    Research Advance

    The dimeric two-pore OSCA/TMEM63 family has recently been identified as mechanically activated ion channels. Previously, based on the unique features of the structure of OSCA1.2, we postulated the potential involvement of several structural elements in sensing membrane tension (Jojoa-Cruz et al., 2018). Interestingly, while OSCA1, 2, and 3 clades are activated by membrane stretch in cell-attached patches (i.e. they are stretch-activated channels), they differ in their ability to transduce membrane deformation induced by a blunt probe (poking). Here, in an effort to understand the domains contributing to mechanical signal transduction, we used cryo-electron microscopy to solve the structure of Arabidopsis thaliana (At) OSCA3.1, which, unlike AtOSCA1.2, only produced stretch- but not poke-activated currents in our initial characterization (Murthy et al., 2018). Mutagenesis and electrophysiological assessment of conserved and divergent putative mechanosensitive features of OSCA1.2 reveal a selective disruption of the macroscopic currents elicited by poking without considerable effects on stretch-activated currents (SAC). Our results support the involvement of the amphipathic helix and lipid-interacting residues in the membrane fenestration in the response to poking. Our findings position these two structural elements as potential sources of functional diversity within the family.

    1. Biochemistry and Chemical Biology
    2. Structural Biology and Molecular Biophysics
    Tien M Phan, Young C Kim ... Jeetain Mittal
    Research Article

    The heterochromatin protein 1 (HP1) family is a crucial component of heterochromatin with diverse functions in gene regulation, cell cycle control, and cell differentiation. In humans, there are three paralogs, HP1α, HP1β, and HP1γ, which exhibit remarkable similarities in their domain architecture and sequence properties. Nevertheless, these paralogs display distinct behaviors in liquid-liquid phase separation (LLPS), a process linked to heterochromatin formation. Here, we employ a coarse-grained simulation framework to uncover the sequence features responsible for the observed differences in LLPS. We highlight the significance of the net charge and charge patterning along the sequence in governing paralog LLPS propensities. We also show that both highly conserved folded and less-conserved disordered domains contribute to the observed differences. Furthermore, we explore the potential co-localization of different HP1 paralogs in multicomponent assemblies and the impact of DNA on this process. Importantly, our study reveals that DNA can significantly reshape the stability of a minimal condensate formed by HP1 paralogs due to competitive interactions of HP1α with HP1β and HP1γ versus DNA. In conclusion, our work highlights the physicochemical nature of interactions that govern the distinct phase-separation behaviors of HP1 paralogs and provides a molecular framework for understanding their role in chromatin organization.