Single methyl groups can act as toggle switches to specify transmembrane protein-protein interactions

  1. Li He
  2. Helena Steinocher
  3. Ashish Shelar
  4. Emily B Cohen
  5. Erin N Heim
  6. Birthe B Kragelund
  7. Gevorg Grigoryan
  8. Daniel DiMaio  Is a corresponding author
  1. Yale School of Medicine, United States
  2. University of Copenhagen, Denmark
  3. Dartmouth College, United States

Abstract

Transmembrane domains (TMDs) engage in protein-protein interactions that regulate many cellular processes, but the rules governing the specificity of these interactions are poorly understood. To discover these principles, we analyzed 26-residue model transmembrane proteins consisting exclusively of leucine and isoleucine (called LIL traptamers) that specifically activate the erythropoietin receptor (EPOR) in mouse cells to confer growth factor independence. We discovered that the placement of a single side chain methyl group at specific positions in a traptamer determined whether it associated productively with the TMD of the human EPOR, the mouse EPOR, or both receptors. Association of the traptamers with the EPOR induced EPOR oligomerization in an orientation that stimulated receptor activity. These results highlight the high intrinsic specificity of TMD interactions, demonstrate that a single methyl group can dictate specificity, and define the minimal chemical difference that can modulate the specificity of TMD interactions and the activity of transmembrane proteins.

Article and author information

Author details

  1. Li He

    Department of Genetics, Yale School of Medicine, New Haven, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Helena Steinocher

    Department of Biology, Structural Biology and NMR Laboratory, University of Copenhagen, Copenhagen, Denmark
    Competing interests
    The authors declare that no competing interests exist.
  3. Ashish Shelar

    Department of Genetics, Yale School of Medicine, New Haven, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Emily B Cohen

    Department of Genetics, Yale School of Medicine, New Haven, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Erin N Heim

    Department of Genetics, Yale School of Medicine, New Haven, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Birthe B Kragelund

    Department of Biology, University of Copenhagen, Copenhagen, Denmark
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-7454-1761
  7. Gevorg Grigoryan

    Department of Computer Science, Dartmouth College, Hanover, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Daniel DiMaio

    Department of Genetics, Yale School of Medicine, New Haven, United States
    For correspondence
    daniel.dimaio@yale.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-2060-5977

Funding

National Institutes of Health (R01 CA037157)

  • Daniel DiMaio

Lundbeckfonden (Lundbeck Foundation)

  • Birthe B Kragelund

Novo Nordisk Foundation (Novo Nordisk Foundation)

  • Birthe B Kragelund

National Institutes of Health (GM113132)

  • Gevorg Grigoryan

National Science Foundation (MCB151032)

  • Gevorg Grigoryan

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Nir Ben-Tal, Tel Aviv University, Israel

Version history

  1. Received: April 11, 2017
  2. Accepted: September 1, 2017
  3. Accepted Manuscript published: September 4, 2017 (version 1)
  4. Version of Record published: September 13, 2017 (version 2)

Copyright

© 2017, He et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,651
    views
  • 361
    downloads
  • 12
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Li He
  2. Helena Steinocher
  3. Ashish Shelar
  4. Emily B Cohen
  5. Erin N Heim
  6. Birthe B Kragelund
  7. Gevorg Grigoryan
  8. Daniel DiMaio
(2017)
Single methyl groups can act as toggle switches to specify transmembrane protein-protein interactions
eLife 6:e27701.
https://doi.org/10.7554/eLife.27701

Share this article

https://doi.org/10.7554/eLife.27701

Further reading

    1. Biochemistry and Chemical Biology
    2. Cell Biology
    Natalia Dolgova, Eva-Maria E Uhlemann ... Oleg Y Dmitriev
    Research Article

    Mediator of ERBB2-driven Cell Motility 1 (MEMO1) is an evolutionary conserved protein implicated in many biological processes; however, its primary molecular function remains unknown. Importantly, MEMO1 is overexpressed in many types of cancer and was shown to modulate breast cancer metastasis through altered cell motility. To better understand the function of MEMO1 in cancer cells, we analyzed genetic interactions of MEMO1 using gene essentiality data from 1028 cancer cell lines and found multiple iron-related genes exhibiting genetic relationships with MEMO1. We experimentally confirmed several interactions between MEMO1 and iron-related proteins in living cells, most notably, transferrin receptor 2 (TFR2), mitoferrin-2 (SLC25A28), and the global iron response regulator IRP1 (ACO1). These interactions indicate that cells with high MEMO1 expression levels are hypersensitive to the disruptions in iron distribution. Our data also indicate that MEMO1 is involved in ferroptosis and is linked to iron supply to mitochondria. We have found that purified MEMO1 binds iron with high affinity under redox conditions mimicking intracellular environment and solved MEMO1 structures in complex with iron and copper. Our work reveals that the iron coordination mode in MEMO1 is very similar to that of iron-containing extradiol dioxygenases, which also display a similar structural fold. We conclude that MEMO1 is an iron-binding protein that modulates iron homeostasis in cancer cells.

    1. Biochemistry and Chemical Biology
    2. Structural Biology and Molecular Biophysics
    Isabelle Petit-Hartlein, Annelise Vermot ... Franck Fieschi
    Research Article

    NADPH oxidases (NOX) are transmembrane proteins, widely spread in eukaryotes and prokaryotes, that produce reactive oxygen species (ROS). Eukaryotes use the ROS products for innate immune defense and signaling in critical (patho)physiological processes. Despite the recent structures of human NOX isoforms, the activation of electron transfer remains incompletely understood. SpNOX, a homolog from Streptococcus pneumoniae, can serves as a robust model for exploring electron transfers in the NOX family thanks to its constitutive activity. Crystal structures of SpNOX full-length and dehydrogenase (DH) domain constructs are revealed here. The isolated DH domain acts as a flavin reductase, and both constructs use either NADPH or NADH as substrate. Our findings suggest that hydride transfer from NAD(P)H to FAD is the rate-limiting step in electron transfer. We identify significance of F397 in nicotinamide access to flavin isoalloxazine and confirm flavin binding contributions from both DH and Transmembrane (TM) domains. Comparison with related enzymes suggests that distal access to heme may influence the final electron acceptor, while the relative position of DH and TM does not necessarily correlate with activity, contrary to previous suggestions. It rather suggests requirement of an internal rearrangement, within the DH domain, to switch from a resting to an active state. Thus, SpNOX appears to be a good model of active NOX2, which allows us to propose an explanation for NOX2’s requirement for activation.