Environmental cystine drives glutamine anaplerosis and sensitizes cancer cells to glutaminase inhibition

Abstract

Many mammalian cancer cell lines depend on glutamine as a major tri-carboxylic acid (TCA) cycle anaplerotic substrate to support proliferation. However, some cell lines that depend on glutamine anaplerosis in culture rely less on glutamine catabolism to proliferate in vivo. We sought to understand the environmental differences that cause differential dependence on glutamine for anaplerosis. We find that cells cultured in adult bovine serum, which better reflects nutrients available to cells in vivo, exhibit decreased glutamine catabolism and reduced reliance on glutamine anaplerosis compared to cells cultured in standard tissue culture conditions. We find that levels of a single nutrient, cystine, accounts for the differential dependence on glutamine in these different environmental contexts. Further, we show that cystine levels dictate glutamine dependence via the cystine/glutamate antiporter xCT/SLC7A11. Thus, xCT/SLC7A11 expression, in conjunction with environmental cystine, is necessary and sufficient to increase glutamine catabolism, defining important determinants of glutamine anaplerosis and glutaminase dependence in cancer.

Data availability

The following previously published data sets were used

Article and author information

Author details

  1. Alexander Muir

    Department of Biology, Massachusetts Institute of Technology, Cambridge, United States
    Competing interests
    No competing interests declared.
  2. Laura V Danai

    Department of Biology, Massachusetts Institute of Technology, Cambridge, United States
    Competing interests
    No competing interests declared.
  3. Dan Y Gui

    Department of Biology, Massachusetts Institute of Technology, Cambridge, United States
    Competing interests
    No competing interests declared.
  4. Chiara Y Waingarten

    Department of Biology, Massachusetts Institute of Technology, Cambridge, United States
    Competing interests
    No competing interests declared.
  5. Caroline A Lewis

    Whitehead Institute for Biomedical Research, Massachusetts Institute of Technology, Cambridge, United States
    Competing interests
    No competing interests declared.
  6. Matthew G Vander Heiden

    Department of Biology, Massachusetts Institute of Technology, Cambridge, United States
    For correspondence
    mvh@mit.edu
    Competing interests
    Matthew G Vander Heiden, Is on the scientific advisory board of Agios Pharmaceuticals and Aeglea Biotherapeutics both of which seek to exploit altered metabolism for therapy..
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-6702-4192

Funding

National Institutes of Health (R01 CA168653)

  • Matthew G Vander Heiden

Howard Hughes Medical Institute (HHMI Faculty Scholar)

  • Matthew G Vander Heiden

Lustgarten Foundation (Research Investigator Award)

  • Matthew G Vander Heiden

Stand Up To Cancer (Innovative Research Grant)

  • Matthew G Vander Heiden

Ludwig Institute for Cancer Research (Ludwig Center at MIT)

  • Matthew G Vander Heiden

National Institutes of Health (R01 CA201276)

  • Matthew G Vander Heiden

National Institutes of Health (P30CA1405141)

  • Matthew G Vander Heiden

National Institutes of Health (F32CA213810)

  • Alexander Muir

National Institutes of Health (F32CA210421)

  • Laura V Danai

National Institutes of Health (T32GM007753)

  • Dan Y Gui

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Ralph DeBerardinis, UT Southwestern Medical Center, United States

Ethics

Animal experimentation: All animals experiments were performed using protocols (#1115-110-18) that were approved by the MIT Committee on Animal Care (IACUC). All surgeries were performed using isoflurane anesthesia administered by vaporizer and every effort was made to minimize suffering.

Version history

  1. Received: April 11, 2017
  2. Accepted: August 7, 2017
  3. Accepted Manuscript published: August 15, 2017 (version 1)
  4. Version of Record published: September 7, 2017 (version 2)

Copyright

© 2017, Muir et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 7,746
    views
  • 1,423
    downloads
  • 229
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Alexander Muir
  2. Laura V Danai
  3. Dan Y Gui
  4. Chiara Y Waingarten
  5. Caroline A Lewis
  6. Matthew G Vander Heiden
(2017)
Environmental cystine drives glutamine anaplerosis and sensitizes cancer cells to glutaminase inhibition
eLife 6:e27713.
https://doi.org/10.7554/eLife.27713

Share this article

https://doi.org/10.7554/eLife.27713

Further reading

    1. Cancer Biology
    2. Genetics and Genomics
    Kevin Nuno, Armon Azizi ... Ravindra Majeti
    Research Article

    Relapse of acute myeloid leukemia (AML) is highly aggressive and often treatment refractory. We analyzed previously published AML relapse cohorts and found that 40% of relapses occur without changes in driver mutations, suggesting that non-genetic mechanisms drive relapse in a large proportion of cases. We therefore characterized epigenetic patterns of AML relapse using 26 matched diagnosis-relapse samples with ATAC-seq. This analysis identified a relapse-specific chromatin accessibility signature for mutationally stable AML, suggesting that AML undergoes epigenetic evolution at relapse independent of mutational changes. Analysis of leukemia stem cell (LSC) chromatin changes at relapse indicated that this leukemic compartment underwent significantly less epigenetic evolution than non-LSCs, while epigenetic changes in non-LSCs reflected overall evolution of the bulk leukemia. Finally, we used single-cell ATAC-seq paired with mitochondrial sequencing (mtscATAC) to map clones from diagnosis into relapse along with their epigenetic features. We found that distinct mitochondrially-defined clones exhibit more similar chromatin accessibility at relapse relative to diagnosis, demonstrating convergent epigenetic evolution in relapsed AML. These results demonstrate that epigenetic evolution is a feature of relapsed AML and that convergent epigenetic evolution can occur following treatment with induction chemotherapy.

    1. Cancer Biology
    2. Cell Biology
    Ibtisam Ibtisam, Alexei F Kisselev
    Short Report

    Rapid recovery of proteasome activity may contribute to intrinsic and acquired resistance to FDA-approved proteasome inhibitors. Previous studies have demonstrated that the expression of proteasome genes in cells treated with sub-lethal concentrations of proteasome inhibitors is upregulated by the transcription factor Nrf1 (NFE2L1), which is activated by a DDI2 protease. Here, we demonstrate that the recovery of proteasome activity is DDI2-independent and occurs before transcription of proteasomal genes is upregulated but requires protein translation. Thus, mammalian cells possess an additional DDI2 and transcription-independent pathway for the rapid recovery of proteasome activity after proteasome inhibition.