Environmental cystine drives glutamine anaplerosis and sensitizes cancer cells to glutaminase inhibition

Abstract

Many mammalian cancer cell lines depend on glutamine as a major tri-carboxylic acid (TCA) cycle anaplerotic substrate to support proliferation. However, some cell lines that depend on glutamine anaplerosis in culture rely less on glutamine catabolism to proliferate in vivo. We sought to understand the environmental differences that cause differential dependence on glutamine for anaplerosis. We find that cells cultured in adult bovine serum, which better reflects nutrients available to cells in vivo, exhibit decreased glutamine catabolism and reduced reliance on glutamine anaplerosis compared to cells cultured in standard tissue culture conditions. We find that levels of a single nutrient, cystine, accounts for the differential dependence on glutamine in these different environmental contexts. Further, we show that cystine levels dictate glutamine dependence via the cystine/glutamate antiporter xCT/SLC7A11. Thus, xCT/SLC7A11 expression, in conjunction with environmental cystine, is necessary and sufficient to increase glutamine catabolism, defining important determinants of glutamine anaplerosis and glutaminase dependence in cancer.

Data availability

The following previously published data sets were used

Article and author information

Author details

  1. Alexander Muir

    Department of Biology, Massachusetts Institute of Technology, Cambridge, United States
    Competing interests
    No competing interests declared.
  2. Laura V Danai

    Department of Biology, Massachusetts Institute of Technology, Cambridge, United States
    Competing interests
    No competing interests declared.
  3. Dan Y Gui

    Department of Biology, Massachusetts Institute of Technology, Cambridge, United States
    Competing interests
    No competing interests declared.
  4. Chiara Y Waingarten

    Department of Biology, Massachusetts Institute of Technology, Cambridge, United States
    Competing interests
    No competing interests declared.
  5. Caroline A Lewis

    Whitehead Institute for Biomedical Research, Massachusetts Institute of Technology, Cambridge, United States
    Competing interests
    No competing interests declared.
  6. Matthew G Vander Heiden

    Department of Biology, Massachusetts Institute of Technology, Cambridge, United States
    For correspondence
    mvh@mit.edu
    Competing interests
    Matthew G Vander Heiden, Is on the scientific advisory board of Agios Pharmaceuticals and Aeglea Biotherapeutics both of which seek to exploit altered metabolism for therapy..
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-6702-4192

Funding

National Institutes of Health (R01 CA168653)

  • Matthew G Vander Heiden

Howard Hughes Medical Institute (HHMI Faculty Scholar)

  • Matthew G Vander Heiden

Lustgarten Foundation (Research Investigator Award)

  • Matthew G Vander Heiden

Stand Up To Cancer (Innovative Research Grant)

  • Matthew G Vander Heiden

Ludwig Institute for Cancer Research (Ludwig Center at MIT)

  • Matthew G Vander Heiden

National Institutes of Health (R01 CA201276)

  • Matthew G Vander Heiden

National Institutes of Health (P30CA1405141)

  • Matthew G Vander Heiden

National Institutes of Health (F32CA213810)

  • Alexander Muir

National Institutes of Health (F32CA210421)

  • Laura V Danai

National Institutes of Health (T32GM007753)

  • Dan Y Gui

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: All animals experiments were performed using protocols (#1115-110-18) that were approved by the MIT Committee on Animal Care (IACUC). All surgeries were performed using isoflurane anesthesia administered by vaporizer and every effort was made to minimize suffering.

Copyright

© 2017, Muir et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 8,244
    views
  • 1,492
    downloads
  • 260
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Alexander Muir
  2. Laura V Danai
  3. Dan Y Gui
  4. Chiara Y Waingarten
  5. Caroline A Lewis
  6. Matthew G Vander Heiden
(2017)
Environmental cystine drives glutamine anaplerosis and sensitizes cancer cells to glutaminase inhibition
eLife 6:e27713.
https://doi.org/10.7554/eLife.27713

Share this article

https://doi.org/10.7554/eLife.27713

Further reading

    1. Cancer Biology
    Han V Han, Richard Efem ... Richard Z Lin
    Research Article

    Most human pancreatic ductal adenocarcinoma (PDAC) are not infiltrated with cytotoxic T cells and are highly resistant to immunotherapy. Over 90% of PDAC have oncogenic KRAS mutations, and phosphoinositide 3-kinases (PI3Ks) are direct effectors of KRAS. Our previous study demonstrated that ablation of Pik3ca in KPC (KrasG12D; Trp53R172H; Pdx1-Cre) pancreatic cancer cells induced host T cells to infiltrate and completely eliminate the tumors in a syngeneic orthotopic implantation mouse model. Now, we show that implantation of Pik3ca−/− KPC (named αKO) cancer cells induces clonal enrichment of cytotoxic T cells infiltrating the pancreatic tumors. To identify potential molecules that can regulate the activity of these anti-tumor T cells, we conducted an in vivo genome-wide gene-deletion screen using αKO cells implanted in the mouse pancreas. The result shows that deletion of propionyl-CoA carboxylase subunit B gene (Pccb) in αKO cells (named p-αKO) leads to immune evasion, tumor progression, and death of host mice. Surprisingly, p-αKO tumors are still infiltrated with clonally enriched CD8+ T cells but they are inactive against tumor cells. However, blockade of PD-L1/PD1 interaction reactivated these clonally enriched T cells infiltrating p-αKO tumors, leading to slower tumor progression and improve survival of host mice. These results indicate that Pccb can modulate the activity of cytotoxic T cells infiltrating some pancreatic cancers and this understanding may lead to improvement in immunotherapy for this difficult-to-treat cancer.

    1. Cancer Biology
    2. Immunology and Inflammation
    Almudena Mendez-Perez, Andres M Acosta-Moreno ... Esteban Veiga
    Short Report

    In this study, we present a proof-of-concept classical vaccination experiment that validates the in silico identification of tumor neoantigens (TNAs) using a machine learning-based platform called NAP-CNB. Unlike other TNA predictors, NAP-CNB leverages RNA-seq data to consider the relative expression of neoantigens in tumors. Our experiments show the efficacy of NAP-CNB. Predicted TNAs elicited potent antitumor responses in mice following classical vaccination protocols. Notably, optimal antitumor activity was observed when targeting the antigen with higher expression in the tumor, which was not the most immunogenic. Additionally, the vaccination combining different neoantigens resulted in vastly improved responses compared to each one individually, showing the worth of multiantigen-based approaches. These findings validate NAP-CNB as an innovative TNA identification platform and make a substantial contribution to advancing the next generation of personalized immunotherapies.