Identification and dynamics of the human ZDHHC16-ZDHHC6 palmitoylation cascade

  1. Laurence Abrami
  2. Tiziano Dallavilla
  3. Patrick A Sandoz
  4. Mustafa Demir
  5. Béatrice Kunz
  6. Georgios Savoglidis
  7. Vassily Hatzimanikatis  Is a corresponding author
  8. F Gisou van der Goot  Is a corresponding author
  1. Ecole Polytechnique Fédérale de Lausanne, Switzerland
  2. Ecole Polytechnique Fédérale de Lausanne, Tajikistan

Abstract

S-Palmitoylation is the only reversible post-translational lipid modification. Knowledge about the DHHC family of palmitoyltransferases is very limited. Here we show that mammalian DHHC6, which modifies key proteins of the endoplasmic reticulum, is controlled by an upstream palmitoyltransferase, DHHC16, revealing the first palmitoylation cascade. Combination of site specific mutagenesis of the three DHHC6 palmitoylation sites, experimental determination of kinetic parameters and data-driven mathematical modelling allowed us to obtain detailed information on the 8 differentially palmitoylated DHHC6 species. We found that species rapidly interconvert through the action of DHHC16 and the Acyl Protein Thioesterase APT2, that each species varies in terms of turnover rate and activity, altogether allowing the cell to robustly tune its DHHC6 activity.

Article and author information

Author details

  1. Laurence Abrami

    Global Health Institute, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
    Competing interests
    The authors declare that no competing interests exist.
  2. Tiziano Dallavilla

    Global Health Institute, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
    Competing interests
    The authors declare that no competing interests exist.
  3. Patrick A Sandoz

    Global Health Institute, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-8379-7267
  4. Mustafa Demir

    Global Health Institute, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
    Competing interests
    The authors declare that no competing interests exist.
  5. Béatrice Kunz

    Global Health Institute, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
    Competing interests
    The authors declare that no competing interests exist.
  6. Georgios Savoglidis

    ISIC, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Tajikistan
    Competing interests
    The authors declare that no competing interests exist.
  7. Vassily Hatzimanikatis

    ISIC, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
    For correspondence
    vassily.hatzimanikatis@epfl.ch
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-6432-4694
  8. F Gisou van der Goot

    Global Health Institute, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
    For correspondence
    gisou.vandergoot@epfl.ch
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-8522-274X

Funding

European Research Council (340260 PalmERa)

  • F Gisou van der Goot

Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung (SystemsX iPhD Fellowship)

  • Tiziano Dallavilla

Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung (SystemsX.ch LipidX RTD)

  • Vassily Hatzimanikatis
  • F Gisou van der Goot

Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung (Division III Grant)

  • F Gisou van der Goot

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2017, Abrami et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,093
    views
  • 586
    downloads
  • 97
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Laurence Abrami
  2. Tiziano Dallavilla
  3. Patrick A Sandoz
  4. Mustafa Demir
  5. Béatrice Kunz
  6. Georgios Savoglidis
  7. Vassily Hatzimanikatis
  8. F Gisou van der Goot
(2017)
Identification and dynamics of the human ZDHHC16-ZDHHC6 palmitoylation cascade
eLife 6:e27826.
https://doi.org/10.7554/eLife.27826

Share this article

https://doi.org/10.7554/eLife.27826

Further reading

    1. Cell Biology
    2. Developmental Biology
    Pavan K Nayak, Arul Subramanian, Thomas F Schilling
    Research Article

    Mechanical forces play a critical role in tendon development and function, influencing cell behavior through mechanotransduction signaling pathways and subsequent extracellular matrix (ECM) remodeling. Here we investigate the molecular mechanisms by which tenocytes in developing zebrafish embryos respond to muscle contraction forces during the onset of swimming and cranial muscle activity. Using genome-wide bulk RNA sequencing of FAC-sorted tenocytes we identify novel tenocyte markers and genes involved in tendon mechanotransduction. Embryonic tendons show dramatic changes in expression of matrix remodeling associated 5b (mxra5b), matrilin1 (matn1), and the transcription factor kruppel-like factor 2a (klf2a), as muscles start to contract. Using embryos paralyzed either by loss of muscle contractility or neuromuscular stimulation we confirm that muscle contractile forces influence the spatial and temporal expression patterns of all three genes. Quantification of these gene expression changes across tenocytes at multiple tendon entheses and myotendinous junctions reveals that their responses depend on force intensity, duration and tissue stiffness. These force-dependent feedback mechanisms in tendons, particularly in the ECM, have important implications for improved treatments of tendon injuries and atrophy.

    1. Cell Biology
    Jittoku Ihara, Yibin Huang ... Koichi Yamamoto
    Research Article

    Chronic kidney disease (CKD) and atherosclerotic heart disease, frequently associated with dyslipidemia and hypertension, represent significant health concerns. We investigated the interplay among these conditions, focusing on the role of oxidized low-density lipoprotein (oxLDL) and angiotensin II (Ang II) in renal injury via G protein αq subunit (Gq) signaling. We hypothesized that oxLDL enhances Ang II-induced Gq signaling via the AT1 (Ang II type 1 receptor)-LOX1 (lectin-like oxLDL receptor) complex. Based on CHO and renal cell model experiments, oxLDL alone did not activate Gq signaling. However, when combined with Ang II, it significantly potentiated Gq-mediated inositol phosphate 1 production and calcium influx in cells expressing both LOX-1 and AT1 but not in AT1-expressing cells. This suggests a critical synergistic interaction between oxLDL and Ang II in the AT1-LOX1 complex. Conformational studies using AT1 biosensors have indicated a unique receptor conformational change due to the oxLDL-Ang II combination. In vivo, wild-type mice fed a high-fat diet with Ang II infusion presented exacerbated renal dysfunction, whereas LOX-1 knockout mice did not, underscoring the pathophysiological relevance of the AT1-LOX1 interaction in renal damage. These findings highlight a novel mechanism of renal dysfunction in CKD driven by dyslipidemia and hypertension and suggest the therapeutic potential of AT1-LOX1 receptor complex in patients with these comorbidities.