Identification and dynamics of the human ZDHHC16-ZDHHC6 palmitoylation cascade

  1. Laurence Abrami
  2. Tiziano Dallavilla
  3. Patrick A Sandoz
  4. Mustafa Demir
  5. Béatrice Kunz
  6. Georgios Savoglidis
  7. Vassily Hatzimanikatis  Is a corresponding author
  8. F Gisou van der Goot  Is a corresponding author
  1. Ecole Polytechnique Fédérale de Lausanne, Switzerland
  2. Ecole Polytechnique Fédérale de Lausanne, Tajikistan

Abstract

S-Palmitoylation is the only reversible post-translational lipid modification. Knowledge about the DHHC family of palmitoyltransferases is very limited. Here we show that mammalian DHHC6, which modifies key proteins of the endoplasmic reticulum, is controlled by an upstream palmitoyltransferase, DHHC16, revealing the first palmitoylation cascade. Combination of site specific mutagenesis of the three DHHC6 palmitoylation sites, experimental determination of kinetic parameters and data-driven mathematical modelling allowed us to obtain detailed information on the 8 differentially palmitoylated DHHC6 species. We found that species rapidly interconvert through the action of DHHC16 and the Acyl Protein Thioesterase APT2, that each species varies in terms of turnover rate and activity, altogether allowing the cell to robustly tune its DHHC6 activity.

Article and author information

Author details

  1. Laurence Abrami

    Global Health Institute, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
    Competing interests
    The authors declare that no competing interests exist.
  2. Tiziano Dallavilla

    Global Health Institute, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
    Competing interests
    The authors declare that no competing interests exist.
  3. Patrick A Sandoz

    Global Health Institute, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-8379-7267
  4. Mustafa Demir

    Global Health Institute, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
    Competing interests
    The authors declare that no competing interests exist.
  5. Béatrice Kunz

    Global Health Institute, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
    Competing interests
    The authors declare that no competing interests exist.
  6. Georgios Savoglidis

    ISIC, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Tajikistan
    Competing interests
    The authors declare that no competing interests exist.
  7. Vassily Hatzimanikatis

    ISIC, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
    For correspondence
    vassily.hatzimanikatis@epfl.ch
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-6432-4694
  8. F Gisou van der Goot

    Global Health Institute, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
    For correspondence
    gisou.vandergoot@epfl.ch
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-8522-274X

Funding

European Research Council (340260 PalmERa)

  • F Gisou van der Goot

Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung (SystemsX iPhD Fellowship)

  • Tiziano Dallavilla

Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung (SystemsX.ch LipidX RTD)

  • Vassily Hatzimanikatis
  • F Gisou van der Goot

Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung (Division III Grant)

  • F Gisou van der Goot

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2017, Abrami et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,020
    views
  • 578
    downloads
  • 92
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Laurence Abrami
  2. Tiziano Dallavilla
  3. Patrick A Sandoz
  4. Mustafa Demir
  5. Béatrice Kunz
  6. Georgios Savoglidis
  7. Vassily Hatzimanikatis
  8. F Gisou van der Goot
(2017)
Identification and dynamics of the human ZDHHC16-ZDHHC6 palmitoylation cascade
eLife 6:e27826.
https://doi.org/10.7554/eLife.27826

Share this article

https://doi.org/10.7554/eLife.27826

Further reading

    1. Cell Biology
    2. Developmental Biology
    Sofía Suárez Freire, Sebastián Perez-Pandolfo ... Mariana Melani
    Research Article

    Eukaryotic cells depend on exocytosis to direct intracellularly synthesized material toward the extracellular space or the plasma membrane, so exocytosis constitutes a basic function for cellular homeostasis and communication between cells. The secretory pathway includes biogenesis of secretory granules (SGs), their maturation and fusion with the plasma membrane (exocytosis), resulting in release of SG content to the extracellular space. The larval salivary gland of Drosophila melanogaster is an excellent model for studying exocytosis. This gland synthesizes mucins that are packaged in SGs that sprout from the trans-Golgi network and then undergo a maturation process that involves homotypic fusion, condensation, and acidification. Finally, mature SGs are directed to the apical domain of the plasma membrane with which they fuse, releasing their content into the gland lumen. The exocyst is a hetero-octameric complex that participates in tethering of vesicles to the plasma membrane during constitutive exocytosis. By precise temperature-dependent gradual activation of the Gal4-UAS expression system, we have induced different levels of silencing of exocyst complex subunits, and identified three temporarily distinctive steps of the regulated exocytic pathway where the exocyst is critically required: SG biogenesis, SG maturation, and SG exocytosis. Our results shed light on previously unidentified functions of the exocyst along the exocytic pathway. We propose that the exocyst acts as a general tethering factor in various steps of this cellular process.

    1. Cell Biology
    Yue Miao, Yongtao Du ... Mei Ding
    Research Article

    The spatiotemporal transition of small GTPase Rab5 to Rab7 is crucial for early-to-late endosome maturation, yet the precise mechanism governing Rab5-to-Rab7 switching remains elusive. USP8, a ubiquitin-specific protease, plays a prominent role in the endosomal sorting of a wide range of transmembrane receptors and is a promising target in cancer therapy. Here, we identified that USP8 is recruited to Rab5-positive carriers by Rabex5, a guanine nucleotide exchange factor (GEF) for Rab5. The recruitment of USP8 dissociates Rabex5 from early endosomes (EEs) and meanwhile promotes the recruitment of the Rab7 GEF SAND-1/Mon1. In USP8-deficient cells, the level of active Rab5 is increased, while the Rab7 signal is decreased. As a result, enlarged EEs with abundant intraluminal vesicles accumulate and digestive lysosomes are rudimentary. Together, our results reveal an important and unexpected role of a deubiquitinating enzyme in endosome maturation.