Abstract

Aging stem cells lose the capacity to properly respond to injury and regenerate their residing tissues. Here, we utilized the ability of Drosophila melanogaster germline stem cells (GSCs) to survive exposure to low doses of ionizing radiation (IR) as a model of adult stem cell injury and identified a regeneration defect in aging GSCs: while aging GSCs survive exposure to IR, they fail to reenter the cell cycle and regenerate the germline in a timely manner. Mechanistically, we identify foxo and mTOR homologue, Tor as important regulators of GSC quiescence following exposure to ionizing radiation. foxo is required for entry in quiescence, while Tor is essential for cell cycle reentry. Importantly, we further show that the lack of regeneration in aging germ line stem cells after IR can be rescued by loss of foxo.

Article and author information

Author details

  1. Filippo Artoni

    Department of Biochemistry, University of Washington, Seattle, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Rebecca Kreipke

    Department of Biochemistry, University of Washington, Seattle, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Ondina Palmeira

    Department of Biochemistry, University of Washington, Seattle, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Connor Dixon

    Department of Biochemistry, University of Washington, Seattle, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Zachary Goldberg

    Department of Biochemistry, University of Washington, Seattle, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Hannele Ruohola-Baker

    Department of Biochemistry, University of Washington, Seattle, United States
    For correspondence
    hannele@uw.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-5588-4531

Funding

National Institute of General Medical Sciences (R01-GM084947)

  • Filippo Artoni
  • Rebecca Kreipke
  • Ondina Palmeira
  • Connor Dixon
  • Zachary Goldberg

National Institute on Aging (Genetic Approaches to Aging Training Grant)

  • Rebecca Kreipke

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2017, Artoni et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,679
    views
  • 507
    downloads
  • 23
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Filippo Artoni
  2. Rebecca Kreipke
  3. Ondina Palmeira
  4. Connor Dixon
  5. Zachary Goldberg
  6. Hannele Ruohola-Baker
(2017)
Loss of foxo rescues stem cell aging in Drosophila germ line
eLife 6:e27842.
https://doi.org/10.7554/eLife.27842

Share this article

https://doi.org/10.7554/eLife.27842