Signalling through AMPA receptors on oligodendrocyte precursors promotes myelination by enhancing oligodendrocyte survival

  1. Eleni Kougioumtzidou
  2. Takahiro Shimizu
  3. Nicola B Hamilton
  4. Koujiro Tohyama
  5. Rolf Sprengel
  6. Hannah Monyer
  7. David Attwell  Is a corresponding author
  8. William D Richardson  Is a corresponding author
  1. University College London, United Kingdom
  2. Iwate Medical University, Japan
  3. University of Heidelberg, Germany

Abstract

Myelin, made by oligodendrocytes, is essential for rapid information transfer in the central nervous system. Oligodendrocyte precursors (OPs) receive glutamatergic synaptic input from axons but how this affects their development is unclear. Murine OPs in white matter express AMPA receptor (AMPAR) subunits GluA2, GluA3 and GluA4. We generated mice in which OPs lack both GluA2 and GluA3, or all three subunits GluA2/3/4, which respectively reduced or abolished AMPAR-mediated input to OPs. In both double- and triple-knockouts OP proliferation and number were unchanged but ~25% fewer oligodendrocytes survived in the subcortical white matter during development. In triple knockouts, this shortfall persisted into adulthood. The oligodendrocyte deficit resulted in ~20% fewer myelin sheaths but the average length, number and thickness of myelin internodes made by individual oligodendrocytes appeared normal. Thus, AMPAR-mediated signalling from active axons stimulates myelin production in developing white matter by enhancing oligodendrocyte survival, without influencing myelin synthesis per se.

Article and author information

Author details

  1. Eleni Kougioumtzidou

    Wolfson Institute for Biomedical Research, University College London, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  2. Takahiro Shimizu

    Wolfson Institute for Biomedical Research, University College London, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  3. Nicola B Hamilton

    Department of Neuroscience, Physiology and Pharmacology, University College London, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  4. Koujiro Tohyama

    The Center for Electron Microscopy and Bio-Imaging Research, Iwate Medical University, Morioka, Japan
    Competing interests
    The authors declare that no competing interests exist.
  5. Rolf Sprengel

    Institute for Anatomy and Cell Biology, University of Heidelberg, Heidelberg, Germany
    Competing interests
    The authors declare that no competing interests exist.
  6. Hannah Monyer

    Department of Clinical Neurobiology, University of Heidelberg, Heidelberg, Germany
    Competing interests
    The authors declare that no competing interests exist.
  7. David Attwell

    Department of Neuroscience, Physiology and Pharmacology, University College London, London, United Kingdom
    For correspondence
    d.attwell@ucl.ac.uk
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-3618-0843
  8. William D Richardson

    Wolfson Institute for Biomedical Research, University College London, London, United Kingdom
    For correspondence
    w.richardson@ucl.ac.uk
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-7261-2485

Funding

Wellcome (100269/Z/12/Z)

  • William D Richardson

Japan Society for the Promotion of Science (24650181)

  • Koujiro Tohyama

Wellcome (108726/Z/15/Z)

  • William D Richardson

Wellcome (099222/Z/12/Z)

  • David Attwell

Wellcome (089591/Z/09/Z)

  • Eleni Kougioumtzidou

European Research Council (293544)

  • William D Richardson

German Research Foundation (SFB636/A4)

  • Rolf Sprengel

German Research Foundation (SFB1134/B01)

  • Rolf Sprengel

German Research Foundation (SFB 1158/A05)

  • Rolf Sprengel

Japan Society for the Promotion of Science (25245069)

  • Koujiro Tohyama

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Carol A Mason, Columbia University, United States

Ethics

Animal experimentation: All animal experiments were pre-approved by the UCL Ethical Committee and authorized by the Home Office of the UK Government in accordance with Animals (Scientific Procedures) Act 1986., under Project Licences PPL 70/7299 and PPL 70/8976 (D. Attwell) and PPL 70/7614 (W.D. Richardson).

Version history

  1. Received: April 25, 2017
  2. Accepted: June 7, 2017
  3. Accepted Manuscript published: June 13, 2017 (version 1)
  4. Version of Record published: June 26, 2017 (version 2)

Copyright

© 2017, Kougioumtzidou et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,878
    views
  • 814
    downloads
  • 108
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Eleni Kougioumtzidou
  2. Takahiro Shimizu
  3. Nicola B Hamilton
  4. Koujiro Tohyama
  5. Rolf Sprengel
  6. Hannah Monyer
  7. David Attwell
  8. William D Richardson
(2017)
Signalling through AMPA receptors on oligodendrocyte precursors promotes myelination by enhancing oligodendrocyte survival
eLife 6:e28080.
https://doi.org/10.7554/eLife.28080

Share this article

https://doi.org/10.7554/eLife.28080

Further reading

    1. Developmental Biology
    2. Neuroscience
    Amy R Poe, Lucy Zhu ... Matthew S Kayser
    Research Article

    Sleep and feeding patterns lack strong daily rhythms during early life. As diurnal animals mature, feeding is consolidated to the day and sleep to the night. In Drosophila, circadian sleep patterns are initiated with formation of a circuit connecting the central clock to arousal output neurons; emergence of circadian sleep also enables long-term memory (LTM). However, the cues that trigger the development of this clock-arousal circuit are unknown. Here, we identify a role for nutritional status in driving sleep-wake rhythm development in Drosophila larvae. We find that in the 2nd instar larval period (L2), sleep and feeding are spread across the day; these behaviors become organized into daily patterns by the 3rd instar larval stage (L3). Forcing mature (L3) animals to adopt immature (L2) feeding strategies disrupts sleep-wake rhythms and the ability to exhibit LTM. In addition, the development of the clock (DN1a)-arousal (Dh44) circuit itself is influenced by the larval nutritional environment. Finally, we demonstrate that larval arousal Dh44 neurons act through glucose metabolic genes to drive onset of daily sleep-wake rhythms. Together, our data suggest that changes to energetic demands in developing organisms trigger the formation of sleep-circadian circuits and behaviors.

    1. Cell Biology
    2. Developmental Biology
    Filip Knop, Apolena Zounarova ... Marie Macůrková
    Research Article

    During Caenorhabditis elegans development, multiple cells migrate long distances or extend processes to reach their final position and/or attain proper shape. The Wnt signalling pathway stands out as one of the major coordinators of cell migration or cell outgrowth along the anterior-posterior body axis. The outcome of Wnt signalling is fine-tuned by various mechanisms including endocytosis. In this study, we show that SEL-5, the C. elegans orthologue of mammalian AP2-associated kinase AAK1, acts together with the retromer complex as a positive regulator of EGL-20/Wnt signalling during the migration of QL neuroblast daughter cells. At the same time, SEL-5 in cooperation with the retromer complex is also required during excretory canal cell outgrowth. Importantly, SEL-5 kinase activity is not required for its role in neuronal migration or excretory cell outgrowth, and neither of these processes is dependent on DPY-23/AP2M1 phosphorylation. We further establish that the Wnt proteins CWN-1 and CWN-2 together with the Frizzled receptor CFZ-2 positively regulate excretory cell outgrowth, while LIN-44/Wnt and LIN-17/Frizzled together generate a stop signal inhibiting its extension.