Medial thalamic stroke and its impact on familiarity and recollection

  1. Lola Danet  Is a corresponding author
  2. Jérémie Pariente
  3. Pierre Eustache
  4. Nicolas Raposo
  5. Igor Sibon
  6. Jean-François Albucher
  7. Fabrice Bonneville
  8. Patrice Péran
  9. Emmanuel J Barbeau
  1. Toulouse NeuroImaging Center, Université de Toulouse, Inserm, UPS, France; CHU Toulouse Purpan, Neurology department, Toulouse, France, France
  2. Toulouse NeuroImaging Center, Université de Toulouse, Inserm, UPS, France, France
  3. CHU Toulouse Purpan, Neurology department, Toulouse, France, France
  4. Department of Diagnostic and Therapeutic Neuroimaging, University of Bordeaux Victor Segalen, Bordeaux University Hospital, France, France
  5. Brain and Cognition Research Centre (CerCo), CNRS, University of Toulouse Paul Sabatier, Toulouse, France, France

Abstract

Models of recognition memory have postulated that the mammillo-thalamic tract (MTT) / anterior thalamic nucleus (AN) complex would be critical for recollection while the Mediodorsal nucleus (MD) of the thalamus would support familiarity and indirectly also be involved in recollection (Aggleton et al., 2011). 12 patients with left thalamic stroke underwent a neuropsychological assessment, three verbal recognition memory tasks assessing familiarity and recollection each using different procedures and a high-resolution structural MRI. Patients showed poor recollection on all three tasks. In contrast, familiarity was spared in each task. No patient had significant AN lesions. Critically, a subset of 5 patients had lesions of the MD without lesions of the MTT. They also showed impaired recollection but preserved familiarity. Recollection is therefore impaired following MD damage, but familiarity is not. This suggests that models of familiarity, which assign a critical role to the MD, should be reappraised.

Article and author information

Author details

  1. Lola Danet

    Neurosciences, Toulouse NeuroImaging Center, Université de Toulouse, Inserm, UPS, France; CHU Toulouse Purpan, Neurology department, Toulouse, France, Toulouse, France
    For correspondence
    lola.danet@inserm.fr
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-8507-6749
  2. Jérémie Pariente

    Neurosciences, Toulouse NeuroImaging Center, Université de Toulouse, Inserm, UPS, France; CHU Toulouse Purpan, Neurology department, Toulouse, France, Toulouse, France
    Competing interests
    The authors declare that no competing interests exist.
  3. Pierre Eustache

    Neurosciences, Toulouse NeuroImaging Center, Université de Toulouse, Inserm, UPS, France, Toulouse, France
    Competing interests
    The authors declare that no competing interests exist.
  4. Nicolas Raposo

    Neurosciences, CHU Toulouse Purpan, Neurology department, Toulouse, France, Toulouse, France
    Competing interests
    The authors declare that no competing interests exist.
  5. Igor Sibon

    Neurology, Department of Diagnostic and Therapeutic Neuroimaging, University of Bordeaux Victor Segalen, Bordeaux University Hospital, France, Bordeaux, France
    Competing interests
    The authors declare that no competing interests exist.
  6. Jean-François Albucher

    Neurosciences, CHU Toulouse Purpan, Neurology department, Toulouse, France, Toulouse, France
    Competing interests
    The authors declare that no competing interests exist.
  7. Fabrice Bonneville

    Neurosciences, Toulouse NeuroImaging Center, Université de Toulouse, Inserm, UPS, France; CHU Toulouse Purpan, Neurology department, Toulouse, France, Toulouse, France
    Competing interests
    The authors declare that no competing interests exist.
  8. Patrice Péran

    Neurosciences, Toulouse NeuroImaging Center, Université de Toulouse, Inserm, UPS, France, Toulouse, France
    Competing interests
    The authors declare that no competing interests exist.
  9. Emmanuel J Barbeau

    Neurosciences, Brain and Cognition Research Centre (CerCo), CNRS, University of Toulouse Paul Sabatier, Toulouse, France, Toulouse, France
    Competing interests
    The authors declare that no competing interests exist.

Funding

Toulouse teaching hospital dedicated grant. (Local funding hospital grant)

  • Jérémie Pariente

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Human subjects: All participants provided written informed consent in accordance with the declaration of Helsinki to take part in this study, which was approved by the local institutional review board (Comité de Protection des Personnes Sud-Ouest et Outre-Mer no. 2-11-04).

Copyright

© 2017, Danet et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,472
    views
  • 219
    downloads
  • 23
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Lola Danet
  2. Jérémie Pariente
  3. Pierre Eustache
  4. Nicolas Raposo
  5. Igor Sibon
  6. Jean-François Albucher
  7. Fabrice Bonneville
  8. Patrice Péran
  9. Emmanuel J Barbeau
(2017)
Medial thalamic stroke and its impact on familiarity and recollection
eLife 6:e28141.
https://doi.org/10.7554/eLife.28141

Share this article

https://doi.org/10.7554/eLife.28141

Further reading

    1. Genetics and Genomics
    2. Neuroscience
    Monique Marylin Alves de Almeida, Yves De Repentigny ... Rashmi Kothary
    Research Article

    Spinal muscular atrophy (SMA) is caused by mutations in the Survival Motor Neuron 1 (SMN1) gene. While traditionally viewed as a motor neuron disorder, there is involvement of various peripheral organs in SMA. Notably, fatty liver has been observed in SMA mouse models and SMA patients. Nevertheless, it remains unclear whether intrinsic depletion of SMN protein in the liver contributes to pathology in the peripheral or central nervous systems. To address this, we developed a mouse model with a liver-specific depletion of SMN by utilizing an Alb-Cre transgene together with one Smn2B allele and one Smn1 exon 7 allele flanked by loxP sites. Initially, we evaluated phenotypic changes in these mice at postnatal day 19 (P19), when the severe model of SMA, the Smn2B/- mice, exhibit many symptoms of the disease. The liver-specific SMN depletion does not induce motor neuron death, neuromuscular pathology or muscle atrophy, characteristics typically observed in the Smn2B/- mouse at P19. However, mild liver steatosis was observed, although no changes in liver function were detected. Notably, pancreatic alterations resembled that of Smn2B/-mice, with a decrease in insulin-producing β-cells and an increase in glucagon-producingα-cells, accompanied by a reduction in blood glucose and an increase in plasma glucagon and glucagon-like peptide (GLP-1). These changes were transient, as mice at P60 exhibited recovery of liver and pancreatic function. While the mosaic pattern of the Cre-mediated excision precludes definitive conclusions regarding the contribution of liver-specific SMN depletion to overall tissue pathology, our findings highlight an intricate connection between liver function and pancreatic abnormalities in SMA.

    1. Neuroscience
    Maren Klingelhöfer-Jens, Katharina Hutterer ... Tina B Lonsdorf
    Research Article

    Childhood adversity is a strong predictor of developing psychopathological conditions. Multiple theories on the mechanisms underlying this association have been suggested which, however, differ in the operationalization of ‘exposure.’ Altered (threat) learning mechanisms represent central mechanisms by which environmental inputs shape emotional and cognitive processes and ultimately behavior. 1402 healthy participants underwent a fear conditioning paradigm (acquisition training, generalization), while acquiring skin conductance responses (SCRs) and ratings (arousal, valence, and contingency). Childhood adversity was operationalized as (1) dichotomization, and following (2) the specificity model, (3) the cumulative risk model, and (4) the dimensional model. Individuals exposed to childhood adversity showed blunted physiological reactivity in SCRs, but not ratings, and reduced CS+/CS- discrimination during both phases, mainly driven by attenuated CS+ responding. The latter was evident across different operationalizations of ‘exposure’ following the different theories. None of the theories tested showed clear explanatory superiority. Notably, a remarkably different pattern of increased responding to the CS- is reported in the literature for anxiety patients, suggesting that individuals exposed to childhood adversity may represent a specific sub-sample. We highlight that theories linking childhood adversity to (vulnerability to) psychopathology need refinement.