1. Neuroscience
Download icon

Rapid whole brain imaging of neural activity in freely behaving larval zebrafish (Danio rerio)

  1. Lin Cong
  2. Zeguan Wang
  3. Yuming Chai
  4. Wei Hang
  5. Chunfeng Shang
  6. Wenbin Yang
  7. Lu Bai
  8. Jiulin Du
  9. Kai Wang  Is a corresponding author
  10. Quan Wen  Is a corresponding author
  1. Chinese Academy of Sciences, China
  2. Hefei National Laboratory for Physical Sciences at Microscale, China
Tools and Resources
  • Cited 78
  • Views 9,404
  • Annotations
Cite this article as: eLife 2017;6:e28158 doi: 10.7554/eLife.28158

Abstract

The internal brain dynamics that link sensation and action are arguably better studied during natural animal behaviors. Here we report on a novel volume imaging and 3D tracking technique that monitors whole brain neural activity in freely swimming larval zebrafish (Danio rerio). We demonstrated the capability of our system through functional imaging of neural activity during visually evoked and prey capture behaviors in larval zebrafish.

Article and author information

Author details

  1. Lin Cong

    Insitute of Neuroscience, Chinese Academy of Sciences, Shanghai, China
    Competing interests
    The authors declare that no competing interests exist.
  2. Zeguan Wang

    Center for Integrative Imaging, Hefei National Laboratory for Physical Sciences at Microscale, Hefei, China
    Competing interests
    The authors declare that no competing interests exist.
  3. Yuming Chai

    Center for Integrative Imaging, Hefei National Laboratory for Physical Sciences at Microscale, Hefei, China
    Competing interests
    The authors declare that no competing interests exist.
  4. Wei Hang

    Institute of Neuroscience, Chinese Academy of Sciences, Shanghai, China
    Competing interests
    The authors declare that no competing interests exist.
  5. Chunfeng Shang

    Insitute of Neuroscience, Chinese Academy of Sciences, Shanghai, China
    Competing interests
    The authors declare that no competing interests exist.
  6. Wenbin Yang

    Center for Integrative Imaging, Hefei National Laboratory for Physical Sciences at Microscale, Hefei, China
    Competing interests
    The authors declare that no competing interests exist.
  7. Lu Bai

    Institute of Neuroscience, Chinese Academy of Sciences, Shanghai, China
    Competing interests
    The authors declare that no competing interests exist.
  8. Jiulin Du

    Insitute of Neuroscience, Chinese Academy of Sciences, Shanghai, China
    Competing interests
    The authors declare that no competing interests exist.
  9. Kai Wang

    Institute of Neuroscience, Chinese Academy of Sciences, Shanghai, China
    For correspondence
    wangkai@ion.ac.cn
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-7858-944X
  10. Quan Wen

    Center for Integrative Imaging, Hefei National Laboratory for Physical Sciences at Microscale, Hefei, China
    For correspondence
    qwen@ustc.edu.cn
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-0268-8403

Funding

Strategic Priority Research Program of the Chinese Academy of Sciences (XDB02060012)

  • Kai Wang

National Science Foundation of China (NSFC-31471051)

  • Quan Wen

China Thousand Talents Program

  • Kai Wang

CAS Pioneer Hundred Talents Program

  • Quan Wen

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: Zebrafish handling procedures were approved by the Institute of Neuroscience, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences.(permit number: USTCACUC1103013).

Reviewing Editor

  1. Ronald L Calabrese, Emory University, United States

Publication history

  1. Received: April 28, 2017
  2. Accepted: September 11, 2017
  3. Accepted Manuscript published: September 20, 2017 (version 1)
  4. Version of Record published: October 17, 2017 (version 2)

Copyright

© 2017, Cong et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 9,404
    Page views
  • 1,299
    Downloads
  • 78
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, Scopus, PubMed Central.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Download citations (links to download the citations from this article in formats compatible with various reference manager tools)

Open citations (links to open the citations from this article in various online reference manager services)

Further reading

    1. Neuroscience
    Timothy S Balmer et al.
    Research Article Updated

    Synapses of glutamatergic mossy fibers (MFs) onto cerebellar unipolar brush cells (UBCs) generate slow excitatory (ON) or inhibitory (OFF) postsynaptic responses dependent on the complement of glutamate receptors expressed on the UBC’s large dendritic brush. Using mouse brain slice recording and computational modeling of synaptic transmission, we found that substantial glutamate is maintained in the UBC synaptic cleft, sufficient to modify spontaneous firing in OFF UBCs and tonically desensitize AMPARs of ON UBCs. The source of this ambient glutamate was spontaneous, spike-independent exocytosis from the MF terminal, and its level was dependent on activity of glutamate transporters EAAT1–2. Increasing levels of ambient glutamate shifted the polarity of evoked synaptic responses in ON UBCs and altered the phase of responses to in vivo-like synaptic activity. Unlike classical fast synapses, receptors at the UBC synapse are virtually always exposed to a significant level of glutamate, which varies in a graded manner during transmission.

    1. Developmental Biology
    2. Neuroscience
    Hiroki Takechi et al.
    Research Article

    Transmembrane protein Golden goal (Gogo) interacts with atypical cadherin Flamingo to direct R8 photoreceptor axons in the Drosophila visual system. However, the precise mechanisms underlying Gogo regulation during columnar- and layer-specific R8 axon targeting are unknown. Our studies demonstrated that the insulin secreted from surface and cortex glia switches the phosphorylation status of Gogo, thereby regulating its two distinct functions. Non-phosphorylated Gogo mediates the initial recognition of the glial protrusion in the center of the medulla column, whereas phosphorylated Gogo suppresses radial filopodia extension by counteracting Flamingo to maintain a one axon to one column ratio. Later, Gogo expression ceases during the midpupal stage, thus allowing R8 filopodia to extend vertically into the M3 layer. These results demonstrate that the long- and short-range signaling between the glia and R8 axon growth cones regulates growth cone dynamics in a stepwise manner, and thus shape the entire organization of the visual system.