Rapid whole brain imaging of neural activity in freely behaving larval zebrafish (Danio rerio)

  1. Lin Cong
  2. Zeguan Wang
  3. Yuming Chai
  4. Wei Hang
  5. Chunfeng Shang
  6. Wenbin Yang
  7. Lu Bai
  8. Jiulin Du
  9. Kai Wang  Is a corresponding author
  10. Quan Wen  Is a corresponding author
  1. Chinese Academy of Sciences, China
  2. Hefei National Laboratory for Physical Sciences at Microscale, China

Abstract

The internal brain dynamics that link sensation and action are arguably better studied during natural animal behaviors. Here we report on a novel volume imaging and 3D tracking technique that monitors whole brain neural activity in freely swimming larval zebrafish (Danio rerio). We demonstrated the capability of our system through functional imaging of neural activity during visually evoked and prey capture behaviors in larval zebrafish.

Article and author information

Author details

  1. Lin Cong

    Insitute of Neuroscience, Chinese Academy of Sciences, Shanghai, China
    Competing interests
    The authors declare that no competing interests exist.
  2. Zeguan Wang

    Center for Integrative Imaging, Hefei National Laboratory for Physical Sciences at Microscale, Hefei, China
    Competing interests
    The authors declare that no competing interests exist.
  3. Yuming Chai

    Center for Integrative Imaging, Hefei National Laboratory for Physical Sciences at Microscale, Hefei, China
    Competing interests
    The authors declare that no competing interests exist.
  4. Wei Hang

    Institute of Neuroscience, Chinese Academy of Sciences, Shanghai, China
    Competing interests
    The authors declare that no competing interests exist.
  5. Chunfeng Shang

    Insitute of Neuroscience, Chinese Academy of Sciences, Shanghai, China
    Competing interests
    The authors declare that no competing interests exist.
  6. Wenbin Yang

    Center for Integrative Imaging, Hefei National Laboratory for Physical Sciences at Microscale, Hefei, China
    Competing interests
    The authors declare that no competing interests exist.
  7. Lu Bai

    Institute of Neuroscience, Chinese Academy of Sciences, Shanghai, China
    Competing interests
    The authors declare that no competing interests exist.
  8. Jiulin Du

    Insitute of Neuroscience, Chinese Academy of Sciences, Shanghai, China
    Competing interests
    The authors declare that no competing interests exist.
  9. Kai Wang

    Institute of Neuroscience, Chinese Academy of Sciences, Shanghai, China
    For correspondence
    wangkai@ion.ac.cn
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-7858-944X
  10. Quan Wen

    Center for Integrative Imaging, Hefei National Laboratory for Physical Sciences at Microscale, Hefei, China
    For correspondence
    qwen@ustc.edu.cn
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-0268-8403

Funding

Strategic Priority Research Program of the Chinese Academy of Sciences (XDB02060012)

  • Kai Wang

National Science Foundation of China (NSFC-31471051)

  • Quan Wen

China Thousand Talents Program

  • Kai Wang

CAS Pioneer Hundred Talents Program

  • Quan Wen

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: Zebrafish handling procedures were approved by the Institute of Neuroscience, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences.(permit number: USTCACUC1103013).

Copyright

© 2017, Cong et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 16,380
    views
  • 1,882
    downloads
  • 251
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Lin Cong
  2. Zeguan Wang
  3. Yuming Chai
  4. Wei Hang
  5. Chunfeng Shang
  6. Wenbin Yang
  7. Lu Bai
  8. Jiulin Du
  9. Kai Wang
  10. Quan Wen
(2017)
Rapid whole brain imaging of neural activity in freely behaving larval zebrafish (Danio rerio)
eLife 6:e28158.
https://doi.org/10.7554/eLife.28158

Share this article

https://doi.org/10.7554/eLife.28158

Further reading

    1. Neuroscience
    Kaspar E Vogt, Ashwinikumar Kulkarni ... Robert W Greene
    Research Article

    Sleep loss increases AMPA-synaptic strength and number in the neocortex. However, this is only part of the synaptic sleep loss response. We report an increased AMPA/NMDA EPSC ratio in frontal-cortical pyramidal neurons of layers 2–3. Silent synapses are absent, decreasing the plastic potential to convert silent NMDA to active AMPA synapses. These sleep loss changes are recovered by sleep. Sleep genes are enriched for synaptic shaping cellular components controlling glutamate synapse phenotype, overlap with autism risk genes, and are primarily observed in excitatory pyramidal neurons projecting intra-telencephalically. These genes are enriched with genes controlled by the transcription factor, MEF2c, and its repressor, HDAC4. Sleep genes can thus provide a framework within which motor learning and training occur mediated by the sleep-dependent oscillation of glutamate-synaptic phenotypes.

    1. Neuroscience
    2. Structural Biology and Molecular Biophysics
    Yangyu Wu, Yangyang Yan ... Fred J Sigworth
    Research Article

    We present near-atomic-resolution cryoEM structures of the mammalian voltage-gated potassium channel Kv1.2 in open, C-type inactivated, toxin-blocked and sodium-bound states at 3.2 Å, 2.5 Å, 3.2 Å, and 2.9 Å. These structures, all obtained at nominally zero membrane potential in detergent micelles, reveal distinct ion-occupancy patterns in the selectivity filter. The first two structures are very similar to those reported in the related Shaker channel and the much-studied Kv1.2–2.1 chimeric channel. On the other hand, two new structures show unexpected patterns of ion occupancy. First, the toxin α-Dendrotoxin, like Charybdotoxin, is seen to attach to the negatively-charged channel outer mouth, and a lysine residue penetrates into the selectivity filter, with the terminal amine coordinated by carbonyls, partially disrupting the outermost ion-binding site. In the remainder of the filter two densities of bound ions are observed, rather than three as observed with other toxin-blocked Kv channels. Second, a structure of Kv1.2 in Na+ solution does not show collapse or destabilization of the selectivity filter, but instead shows an intact selectivity filter with ion density in each binding site. We also attempted to image the C-type inactivated Kv1.2 W366F channel in Na+ solution, but the protein conformation was seen to be highly variable and only a low-resolution structure could be obtained. These findings present new insights into the stability of the selectivity filter and the mechanism of toxin block of this intensively studied, voltage-gated potassium channel.