Rapid whole brain imaging of neural activity in freely behaving larval zebrafish (Danio rerio)

  1. Lin Cong
  2. Zeguan Wang
  3. Yuming Chai
  4. Wei Hang
  5. Chunfeng Shang
  6. Wenbin Yang
  7. Lu Bai
  8. Jiulin Du
  9. Kai Wang  Is a corresponding author
  10. Quan Wen  Is a corresponding author
  1. Chinese Academy of Sciences, China
  2. Hefei National Laboratory for Physical Sciences at Microscale, China

Abstract

The internal brain dynamics that link sensation and action are arguably better studied during natural animal behaviors. Here we report on a novel volume imaging and 3D tracking technique that monitors whole brain neural activity in freely swimming larval zebrafish (Danio rerio). We demonstrated the capability of our system through functional imaging of neural activity during visually evoked and prey capture behaviors in larval zebrafish.

Article and author information

Author details

  1. Lin Cong

    Insitute of Neuroscience, Chinese Academy of Sciences, Shanghai, China
    Competing interests
    The authors declare that no competing interests exist.
  2. Zeguan Wang

    Center for Integrative Imaging, Hefei National Laboratory for Physical Sciences at Microscale, Hefei, China
    Competing interests
    The authors declare that no competing interests exist.
  3. Yuming Chai

    Center for Integrative Imaging, Hefei National Laboratory for Physical Sciences at Microscale, Hefei, China
    Competing interests
    The authors declare that no competing interests exist.
  4. Wei Hang

    Institute of Neuroscience, Chinese Academy of Sciences, Shanghai, China
    Competing interests
    The authors declare that no competing interests exist.
  5. Chunfeng Shang

    Insitute of Neuroscience, Chinese Academy of Sciences, Shanghai, China
    Competing interests
    The authors declare that no competing interests exist.
  6. Wenbin Yang

    Center for Integrative Imaging, Hefei National Laboratory for Physical Sciences at Microscale, Hefei, China
    Competing interests
    The authors declare that no competing interests exist.
  7. Lu Bai

    Institute of Neuroscience, Chinese Academy of Sciences, Shanghai, China
    Competing interests
    The authors declare that no competing interests exist.
  8. Jiulin Du

    Insitute of Neuroscience, Chinese Academy of Sciences, Shanghai, China
    Competing interests
    The authors declare that no competing interests exist.
  9. Kai Wang

    Institute of Neuroscience, Chinese Academy of Sciences, Shanghai, China
    For correspondence
    wangkai@ion.ac.cn
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-7858-944X
  10. Quan Wen

    Center for Integrative Imaging, Hefei National Laboratory for Physical Sciences at Microscale, Hefei, China
    For correspondence
    qwen@ustc.edu.cn
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-0268-8403

Funding

Strategic Priority Research Program of the Chinese Academy of Sciences (XDB02060012)

  • Kai Wang

National Science Foundation of China (NSFC-31471051)

  • Quan Wen

China Thousand Talents Program

  • Kai Wang

CAS Pioneer Hundred Talents Program

  • Quan Wen

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: Zebrafish handling procedures were approved by the Institute of Neuroscience, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences.(permit number: USTCACUC1103013).

Copyright

© 2017, Cong et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 16,133
    views
  • 1,860
    downloads
  • 248
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Lin Cong
  2. Zeguan Wang
  3. Yuming Chai
  4. Wei Hang
  5. Chunfeng Shang
  6. Wenbin Yang
  7. Lu Bai
  8. Jiulin Du
  9. Kai Wang
  10. Quan Wen
(2017)
Rapid whole brain imaging of neural activity in freely behaving larval zebrafish (Danio rerio)
eLife 6:e28158.
https://doi.org/10.7554/eLife.28158

Share this article

https://doi.org/10.7554/eLife.28158

Further reading

    1. Neuroscience
    Hannah R Martin, Anna Lysakowski, Ruth Anne Eatock
    Research Article

    In amniotes, head motions and tilt are detected by two types of vestibular hair cells (HCs) with strikingly different morphology and physiology. Mature type I HCs express a large and very unusual potassium conductance, gK,L, which activates negative to resting potential, confers very negative resting potentials and low input resistances, and enhances an unusual non-quantal transmission from type I cells onto their calyceal afferent terminals. Following clues pointing to KV1.8 (Kcna10) in the Shaker K channel family as a candidate gK,L subunit, we compared whole-cell voltage-dependent currents from utricular HCs of KV1.8-null mice and littermate controls. We found that KV1.8 is necessary not just for gK,L but also for fast-inactivating and delayed rectifier currents in type II HCs, which activate positive to resting potential. The distinct properties of the three KV1.8-dependent conductances may reflect different mixing with other KV subunits that are reported to be differentially expressed in type I and II HCs. In KV1.8-null HCs of both types, residual outwardly rectifying conductances include KV7 (Knq) channels. Current clamp records show that in both HC types, KV1.8-dependent conductances increase the speed and damping of voltage responses. Features that speed up vestibular receptor potentials and non-quantal afferent transmission may have helped stabilize locomotion as tetrapods moved from water to land.

    1. Neuroscience
    Jessica Royer, Valeria Kebets ... Boris C Bernhardt
    Research Article

    Complex structural and functional changes occurring in typical and atypical development necessitate multidimensional approaches to better understand the risk of developing psychopathology. Here, we simultaneously examined structural and functional brain network patterns in relation to dimensions of psychopathology in the Adolescent Brain Cognitive Development dataset. Several components were identified, recapitulating the psychopathology hierarchy, with the general psychopathology (p) factor explaining most covariance with multimodal imaging features, while the internalizing, externalizing, and neurodevelopmental dimensions were each associated with distinct morphological and functional connectivity signatures. Connectivity signatures associated with the p factor and neurodevelopmental dimensions followed the sensory-to-transmodal axis of cortical organization, which is related to the emergence of complex cognition and risk for psychopathology. Results were consistent in two separate data subsamples and robust to variations in analytical parameters. Although model parameters yielded statistically significant brain-behavior associations in unseen data, generalizability of the model was rather limited for all three latent components (r change from within- to out-of-sample statistics: LC1within=0.36, LC1out=0.03; LC2within=0.34, LC2out=0.05; LC3within=0.35, LC3out=0.07). Our findings help in better understanding biological mechanisms underpinning dimensions of psychopathology, and could provide brain-based vulnerability markers.