Infants are superior in implicit crossmodal learning and use other learning mechanisms than adults

Abstract

During development internal models of the sensory world must be acquired which have to be continuously adapted later. We used event-related potentials (ERP) to test the hypothesis that infants extract crossmodal statistics implicitly while adults learn them when task relevant. Participants were passively exposed to frequent standard audio-visual combinations (A1V1, A2V2, p=0.35 each), rare recombinations of these standard stimuli (A1V2, A2V1, p=0.10 each), and a rare audio-visual deviant with infrequent auditory and visual elements (A3V3, p=0.10). While both six-month-old infants and adults differentiated between rare deviants and standards involving early neural processing stages only infants were sensitive to crossmodal statistics as indicated by a late ERP difference between standard and recombined stimuli. A second experiment revealed that adults differentiated recombined and standard combinations when crossmodal combinations were task relevant. These results demonstrate a heightened sensitivity for crossmodal statistics in infants and a change in learning mode from infancy to adulthood.

Article and author information

Author details

  1. Sophie Rohlf

    Biological Psychology and Neuropsychology, University of Hamburg, Hamburg, Germany
    For correspondence
    sophie.rohlf@uni-hamburg.de
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-8947-5613
  2. Boukje Habets

    Biological Psychology and Neuropsychology, University of Hamburg, Hamburg, Germany
    Competing interests
    The authors declare that no competing interests exist.
  3. Marco von Frieling

    Biological Psychology and Neuropsychology, University of Hamburg, Hamburg, Germany
    Competing interests
    The authors declare that no competing interests exist.
  4. Brigitte Röder

    Biological Psychology and Neuropsychology, University of Hamburg, Hamburg, Germany
    Competing interests
    The authors declare that no competing interests exist.

Funding

H2020 European Research Council (ERC-2009-AdG 249425 CriticalBrainChanges)

  • Brigitte Röder

City of Hamburg (Crossmodal Learning)

  • Brigitte Röder

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Sabine Kastner, Princeton University, United States

Ethics

Human subjects: Parents (Experiment 1a) and participants (Experiment 1b/2a/2b) gave their written consent and were informed about their right to abort the experiment at any time. All experiments were performed in accordance with the ethical standards laid down in the Declaration of Helsinki in 1964. The procedure was approved by the ethics board of the German Psychological Society (DGPs).

Version history

  1. Received: May 2, 2017
  2. Accepted: September 26, 2017
  3. Accepted Manuscript published: September 26, 2017 (version 1)
  4. Version of Record published: October 30, 2017 (version 2)

Copyright

© 2017, Rohlf et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,514
    Page views
  • 219
    Downloads
  • 10
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Sophie Rohlf
  2. Boukje Habets
  3. Marco von Frieling
  4. Brigitte Röder
(2017)
Infants are superior in implicit crossmodal learning and use other learning mechanisms than adults
eLife 6:e28166.
https://doi.org/10.7554/eLife.28166

Share this article

https://doi.org/10.7554/eLife.28166

Further reading

    1. Neuroscience
    Sydney Trask, Nicole C Ferrara
    Insight

    Gradually reducing a source of fear during extinction treatments may weaken negative memories in the long term.

    1. Cell Biology
    2. Neuroscience
    Haibin Yu, Dandan Liu ... Kai Yuan
    Research Article

    O-GlcNAcylation is a dynamic post-translational modification that diversifies the proteome. Its dysregulation is associated with neurological disorders that impair cognitive function, and yet identification of phenotype-relevant candidate substrates in a brain-region specific manner remains unfeasible. By combining an O-GlcNAc binding activity derived from Clostridium perfringens OGA (CpOGA) with TurboID proximity labeling in Drosophila, we developed an O-GlcNAcylation profiling tool that translates O-GlcNAc modification into biotin conjugation for tissue-specific candidate substrates enrichment. We mapped the O-GlcNAc interactome in major brain regions of Drosophila and found that components of the translational machinery, particularly ribosomal subunits, were abundantly O-GlcNAcylated in the mushroom body of Drosophila brain. Hypo-O-GlcNAcylation induced by ectopic expression of active CpOGA in the mushroom body decreased local translational activity, leading to olfactory learning deficits that could be rescued by dMyc overexpression-induced increase of protein synthesis. Our study provides a useful tool for future dissection of tissue-specific functions of O-GlcNAcylation in Drosophila, and suggests a possibility that O-GlcNAcylation impacts cognitive function via regulating regional translational activity in the brain.