The human cytoplasmic dynein interactome reveals novel activators of motility

  1. Willam B Redwine
  2. Morgan E DeSantis
  3. Ian Hollyer
  4. Zaw Min Htet
  5. Phuoc Tien Tran
  6. Selene K Swanson
  7. Laurence Florens
  8. Michael P Washburn
  9. Samara L Reck-Peterson  Is a corresponding author
  1. University of California, San Diego, United States
  2. Northwestern University, United States
  3. Stowers Institute of Medical Research, United States
  4. Stowers Institute for Medical Research, United States

Abstract

In human cells, cytoplasmic dynein-1 is essential for long-distance transport of many cargos, including organelles, RNAs, proteins, and viruses, towards microtubule minus ends. To understand how a single motor achieves cargo specificity, we identified the human dynein interactome by attaching a promiscuous biotin ligase ("BioID") to seven components of the dynein machinery, including a subunit of the essential cofactor dynactin. This method reported spatial information about the large cytosolic dynein/dynactin complex in living cells. To achieve maximal motile activity and to bind its cargos, human dynein/dynactin requires "activators", of which only five have been described. We developed methods to identify new activators in our BioID data, and discovered that ninein and ninein-like are a new family of dynein activators. Analysis of the protein interactomes for six activators, including ninein and ninein-like, suggests that each dynein activator has multiple cargos.

Article and author information

Author details

  1. Willam B Redwine

    Department of Cellular and Molecular Medicine, University of California, San Diego, San Diego, United States
    Competing interests
    No competing interests declared.
  2. Morgan E DeSantis

    Department of Cellular and Molecular Medicine, University of California, San Diego, San Diego, United States
    Competing interests
    No competing interests declared.
  3. Ian Hollyer

    Feinberg School of Medicine, Northwestern University, Chicago, United States
    Competing interests
    No competing interests declared.
  4. Zaw Min Htet

    Department of Cellular and Molecular Medicine, University of California, San Diego, San Diego, United States
    Competing interests
    No competing interests declared.
  5. Phuoc Tien Tran

    Department of Cellular and Molecular Medicine, University of California, San Diego, San Diego, United States
    Competing interests
    No competing interests declared.
  6. Selene K Swanson

    Stowers Institute of Medical Research, Kansas City, United States
    Competing interests
    No competing interests declared.
  7. Laurence Florens

    Stowers Institute for Medical Research, Kansas City, United States
    Competing interests
    No competing interests declared.
  8. Michael P Washburn

    Stowers Institute for Medical Research, Kansas City, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-7568-2585
  9. Samara L Reck-Peterson

    Department of Cellular and Molecular Medicine, University of California, San Diego, San Diego, United States
    For correspondence
    sreckpeterson@ucsd.edu
    Competing interests
    Samara L Reck-Peterson, Reviewing editor, eLife.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-1553-465X

Funding

National Institutes of Health (R01GM121772)

  • Willam B Redwine
  • Phuoc Tien Tran
  • Samara L Reck-Peterson

Howard Hughes Medical Institute (Faculty Scholar)

  • Morgan E DeSantis
  • Samara L Reck-Peterson

Simons Foundation (Faculty Scholar)

  • Morgan E DeSantis
  • Samara L Reck-Peterson

National Institutes of Health (R01GM107214)

  • Ian Hollyer
  • Samara L Reck-Peterson

Jane Coffin Childs Memorial Fund for Medical Research

  • Morgan E DeSantis

National Science Foundation

  • Zaw Min Htet

Stowers Institute for Medical Research

  • Selene K Swanson
  • Laurence Florens
  • Michael P Washburn

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2017, Redwine et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 9,172
    views
  • 1,450
    downloads
  • 141
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Willam B Redwine
  2. Morgan E DeSantis
  3. Ian Hollyer
  4. Zaw Min Htet
  5. Phuoc Tien Tran
  6. Selene K Swanson
  7. Laurence Florens
  8. Michael P Washburn
  9. Samara L Reck-Peterson
(2017)
The human cytoplasmic dynein interactome reveals novel activators of motility
eLife 6:e28257.
https://doi.org/10.7554/eLife.28257

Share this article

https://doi.org/10.7554/eLife.28257

Further reading

    1. Cancer Biology
    2. Cell Biology
    Rui Hua, Jean X Jiang
    Insight

    Cell crowding causes high-grade breast cancer cells to become more invasive by activating a molecular switch that causes the cells to shrink and spread.

    1. Cell Biology
    Dharmendra Kumar Nath, Subash Dhakal, Youngseok Lee
    Research Advance

    Understanding how the brain controls nutrient storage is pivotal. Transient receptor potential (TRP) channels are conserved from insects to humans. They serve in detecting environmental shifts and in acting as internal sensors. Previously, we demonstrated the role of TRPγ in nutrient-sensing behavior (Dhakal et al., 2022). Here, we found that a TRPγ mutant exhibited in Drosophila melanogaster is required for maintaining normal lipid and protein levels. In animals, lipogenesis and lipolysis control lipid levels in response to food availability. Lipids are mostly stored as triacylglycerol in the fat bodies (FBs) of D. melanogaster. Interestingly, trpγ deficient mutants exhibited elevated TAG levels and our genetic data indicated that Dh44 neurons are indispensable for normal lipid storage but not protein storage. The trpγ mutants also exhibited reduced starvation resistance, which was attributed to insufficient lipolysis in the FBs. This could be mitigated by administering lipase or metformin orally, indicating a potential treatment pathway. Gene expression analysis indicated that trpγ knockout downregulated brummer, a key lipolytic gene, resulting in chronic lipolytic deficits in the gut and other fat tissues. The study also highlighted the role of specific proteins, including neuropeptide DH44 and its receptor DH44R2 in lipid regulation. Our findings provide insight into the broader question of how the brain and gut regulate nutrient storage.