Stochastic variation in the initial phase of bacterial infection predicts the probability of survival in D. melanogaster

  1. David Duneau  Is a corresponding author
  2. Jean-Baptiste Ferdy
  3. Jonathan Revah
  4. Hannah Kondolf
  5. Gerardo A Ortiz
  6. Brian P Lazzaro
  7. Nicolas Buchon  Is a corresponding author
  1. Cornell University, United States
  2. University of Toulouse 3, France

Abstract

A central problem in infection biology is understanding why two individuals exposed to identical infections have different outcomes. We have developed an experimental model where genetically identical, co-housed Drosophila given identical systemic infections experience different outcomes, with some individuals succumbing to acute infection while others control the pathogen as an asymptomatic persistent infection. We found that differences in bacterial burden at the time of death did not explain the two outcomes of infection. Inter-individual variation in survival stems from variation in within-host bacterial growth, which is determined by the immune response. We developed a model that captures bacterial growth dynamics and identifies key factors that predict the infection outcome: the rate of bacterial proliferation and the time required for the host to establish an effective immunological control. Our results provide a framework for studying the individual host-pathogen parameters governing the progression of infection and lead ultimately to life or death.

Article and author information

Author details

  1. David Duneau

    Department of Entomology, Cornell University, Ithaca, United States
    For correspondence
    david.duneau@gmail.com
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-8323-1511
  2. Jean-Baptiste Ferdy

    Laboratoire Évolution and Diversité Biologique, University of Toulouse 3, Toulouse, France
    Competing interests
    The authors declare that no competing interests exist.
  3. Jonathan Revah

    Department of Entomology, Cornell University, Ithaca, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Hannah Kondolf

    Department of Entomology, Cornell University, Ithaca, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Gerardo A Ortiz

    Department of Entomology, Cornell University, Ithaca, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Brian P Lazzaro

    Department of Entomology, Cornell University, Ithaca, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Nicolas Buchon

    Department of Entomology, Cornell University, Ithaca, United States
    For correspondence
    nicolas.buchon@cornell.edu
    Competing interests
    The authors declare that no competing interests exist.

Funding

National Science Foundation (1354421)

  • Nicolas Buchon

National Institutes of Health (RO1 AI083932)

  • Brian P Lazzaro

New York State Department of Health (Empire state stem cell fund C029542)

  • Nicolas Buchon

Swiss National Foundation (Fellowship from P300P3_147874)

  • David Duneau

Agence Nationale de la Recherche (French Laboratory of Excellence ANR-11-IDEX-0002-02)

  • David Duneau

Agence Nationale de la Recherche (French Laboratory of Excellence project ANR-10-LABX-41)

  • David Duneau

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2017, Duneau et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 6,293
    views
  • 912
    downloads
  • 135
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. David Duneau
  2. Jean-Baptiste Ferdy
  3. Jonathan Revah
  4. Hannah Kondolf
  5. Gerardo A Ortiz
  6. Brian P Lazzaro
  7. Nicolas Buchon
(2017)
Stochastic variation in the initial phase of bacterial infection predicts the probability of survival in D. melanogaster
eLife 6:e28298.
https://doi.org/10.7554/eLife.28298

Share this article

https://doi.org/10.7554/eLife.28298

Further reading

    1. Immunology and Inflammation
    2. Microbiology and Infectious Disease
    Yan Zhao, Hanshuo Zhu ... Li Sun
    Research Article

    Type III secretion system (T3SS) is a virulence apparatus existing in many bacterial pathogens. Structurally, T3SS consists of the base, needle, tip, and translocon. The NLRC4 inflammasome is the major receptor for T3SS needle and basal rod proteins. Whether other T3SS components are recognized by NLRC4 is unclear. In this study, using Edwardsiella tarda as a model intracellular pathogen, we examined T3SS−inflammasome interaction and its effect on cell death. E. tarda induced pyroptosis in a manner that required the bacterial translocon and the host inflammasome proteins of NLRC4, NLRP3, ASC, and caspase 1/4. The translocon protein EseB triggered NLRC4/NAIP-mediated pyroptosis by binding NAIP via its C-terminal region, particularly the terminal 6 residues (T6R). EseB homologs exist widely in T3SS-positive bacteria and share high identities in T6R. Like E. tarda EseB, all of the representatives of the EseB homologs exhibited T6R-dependent NLRC4 activation ability. Together these results revealed the function and molecular mechanism of EseB to induce host cell pyroptosis and suggested a highly conserved inflammasome-activation mechanism of T3SS translocon in bacterial pathogens.

    1. Microbiology and Infectious Disease
    Manuela C Aguirre-Botero, Olga Pacios ... Rogerio Amino
    Research Article

    Plasmodium sporozoites are inoculated into the skin during the bite of an infected mosquito. This motile stage invades cutaneous blood vessels to reach the liver and infect hepatocytes. The circumsporozoite protein (CSP) on the sporozoite surface is an important antigen targeted by protective antibodies (Abs) in immunoprophylaxis or elicited by vaccination. Antibody-mediated protection mainly unfolds during parasite skin migration, but rare and potent protective Abs additionally neutralize sporozoite in the liver. Here, using a rodent malaria model, microscopy and bioluminescence imaging, we show a late-neutralizing effect of 3D11 anti-CSP monoclonal antibody (mAb) in the liver. The need for several hours to eliminate parasites in the liver was associated with an accumulation of 3D11 effects, starting with the inhibition of sporozoite motility, sinusoidal extravasation, cell invasion, and terminating with the parasite killing inside the invaded cell. This late-neutralizing activity could be helpful to identify more potent therapeutic mAbs with stronger activity in the liver.