Heat stress promotes longevity in budding yeast by relaxing the confinement of age-promoting factors in the mother cell

  1. Sandro Baldi
  2. Alessio Bolognesi
  3. Anne Cornelis Meinema
  4. Yves Barral  Is a corresponding author
  1. Ludwig-Maximilians-University, Germany
  2. Eidgenössische Technische Hochschule Zürich, Switzerland

Abstract

Although individuals of many species inexorably age, a number of observations established that the rate of ageing is modulated in response to a variety of mild stresses. Here, we investigated how heat stress promotes longevity in yeast. We show that upon growth at higher temperature, yeast cells relax the retention of DNA circles, which act as ageing factors in the mother cell. The enhanced frequency at which circles redistribute to daughter cells was not due to changes of anaphase duration or nuclear shape but solely to the downregulation of the diffusion barrier in the nuclear envelope. This effect depended on the PKA and Tor1 pathways, downstream of stress-response kinase Pkc1. Inhibition of these responses restored barrier function and circle retention and abrogated the effect of heat stress on longevity. Our data indicate that redistribution of ageing factors from aged cells to their progeny can be a mechanism for modulating longevity.

Article and author information

Author details

  1. Sandro Baldi

    Biomedical Center Munich, Ludwig-Maximilians-University, Munich, Germany
    Competing interests
    The authors declare that no competing interests exist.
  2. Alessio Bolognesi

    Institute of Biochemistry, Department of Biology, Eidgenössische Technische Hochschule Zürich, Zürich, Switzerland
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-7268-4577
  3. Anne Cornelis Meinema

    Institute of Biochemistry, Department of Biology, Eidgenössische Technische Hochschule Zürich, Zürich, Switzerland
    Competing interests
    The authors declare that no competing interests exist.
  4. Yves Barral

    Institute of Biochemistry, Department of Biology, Eidgenössische Technische Hochschule Zürich, Zürich, Switzerland
    For correspondence
    yves.barral@bc.biol.ethz.ch
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-0989-3373

Funding

Eidgenössische Technische Hochschule Zürich

  • Yves Barral

H2020 European Research Council

  • Yves Barral

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2017, Baldi et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,907
    views
  • 488
    downloads
  • 26
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Sandro Baldi
  2. Alessio Bolognesi
  3. Anne Cornelis Meinema
  4. Yves Barral
(2017)
Heat stress promotes longevity in budding yeast by relaxing the confinement of age-promoting factors in the mother cell
eLife 6:e28329.
https://doi.org/10.7554/eLife.28329

Share this article

https://doi.org/10.7554/eLife.28329

Further reading

    1. Cell Biology
    2. Immunology and Inflammation
    Richard A Kahn, Harvinder Virk ... Skye Longworth
    Feature Article

    Antibodies are used in many areas of biomedical and clinical research, but many of these antibodies have not been adequately characterized, which casts doubt on the results reported in many scientific papers. This problem is compounded by a lack of suitable control experiments in many studies. In this article we review the history of the ‘antibody characterization crisis’, and we document efforts and initiatives to address the problem, notably for antibodies that target human proteins. We also present recommendations for a range of stakeholders – researchers, universities, journals, antibody vendors and repositories, scientific societies and funders – to increase the reproducibility of studies that rely on antibodies.

    1. Cancer Biology
    2. Cell Biology
    Francesca Butera, Julia E Sero ... Chris Bakal
    Research Article

    The canonical NF-κB transcription factor RELA is a master regulator of immune and stress responses and is upregulated in PDAC tumours. In this study, we characterised previously unexplored endogenous RELA-GFP dynamics in PDAC cell lines through live single cell imaging. Our observations revealed that TNFα stimulation induces rapid, sustained, and non-oscillatory nuclear translocation of RELA. Through Bayesian analysis of single cell datasets with variation in nuclear RELA, we predicted that RELA heterogeneity in PDAC cell lines is dependent on F-actin dynamics. RNA-seq analysis identified distinct clusters of RELA-regulated gene expression in PDAC cells, including TNFα-induced RELA upregulation of the actin regulators NUAK2 and ARHGAP31. Further, siRNA-mediated depletion of ARHGAP31 and NUAK2 altered TNFα-stimulated nuclear RELA dynamics in PDAC cells, establishing a novel negative feedback loop that regulates RELA activation by TNFα. Additionally, we characterised the NF-κB pathway in PDAC cells, identifying how NF-κB/IκB proteins genetically and physically interact with RELA in the absence or presence of TNFα. Taken together, we provide computational and experimental support for interdependence between the F-actin network and the NF-κB pathway with RELA translocation dynamics in PDAC.