Evidence that Mediator is essential for Pol II transcription, but is not a required component of the preinitiation complex in vivo

  1. Natalia Petrenko
  2. Yi Jin
  3. Koon Ho Wong
  4. Kevin Struhl  Is a corresponding author
  1. Harvard Medical School, United States
  2. University of Macau, China

Abstract

The Mediator complex has been described as a general transcription factor, but it is unclear if it is essential for Pol II transcription and/or is a required component of the preinitiation complex (PIC) in vivo. Here, we show that depletion of individual subunits, even those essential for cell growth, causes a general but only modest decrease in transcription. In contrast, simultaneous depletion of all Mediator modules causes a drastic decrease in transcription. Depletion of head or middle subunits, but not tail subunits, causes a downstream shift in the Pol II occupancy profile, suggesting that Mediator at the core promoter inhibits promoter escape. Interestingly, a functional PIC and Pol II transcription can occur when Mediator is not detected at core promoters. These results provide strong evidence that Mediator is essential for Pol II transcription and stimulates PIC formation, but it is not a required component of the PIC in vivo.

Data availability

The following data sets were generated
The following previously published data sets were used
    1. Paul et al.
    (2015) Saccharomyces cerevisiae S288c Genome sequencing
    Publicly available via DNA Data Bank of Japan (accession no. SRP047524).

Article and author information

Author details

  1. Natalia Petrenko

    Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, United States
    Competing interests
    No competing interests declared.
  2. Yi Jin

    Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, United States
    Competing interests
    No competing interests declared.
  3. Koon Ho Wong

    Faculty of Health Sciences, University of Macau, Zhuhai Shi, China
    Competing interests
    No competing interests declared.
  4. Kevin Struhl

    Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, United States
    For correspondence
    kevin@hms.harvard.edu
    Competing interests
    Kevin Struhl, Reviewing editor, eLife.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-4181-7856

Funding

National Institutes of Health (GM 30186)

  • Kevin Struhl

Croucher Foundation

  • Koon Ho Wong

University of Macau (MYRG2015-00186-FHS)

  • Koon Ho Wong

University of Macau (MYRG2016-0-0211-FHS)

  • Koon Ho Wong

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Alan G Hinnebusch, National Institutes of Health, United States

Version history

  1. Received: December 24, 2016
  2. Accepted: July 9, 2017
  3. Accepted Manuscript published: July 12, 2017 (version 1)
  4. Version of Record published: July 26, 2017 (version 2)
  5. Version of Record updated: September 18, 2017 (version 3)

Copyright

© 2017, Petrenko et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,322
    views
  • 680
    downloads
  • 36
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Natalia Petrenko
  2. Yi Jin
  3. Koon Ho Wong
  4. Kevin Struhl
(2017)
Evidence that Mediator is essential for Pol II transcription, but is not a required component of the preinitiation complex in vivo
eLife 6:e28447.
https://doi.org/10.7554/eLife.28447

Share this article

https://doi.org/10.7554/eLife.28447

Further reading

    1. Chromosomes and Gene Expression
    2. Genetics and Genomics
    Lisa Baumgartner, Jonathan J Ipsaro ... Julius Brennecke
    Research Advance

    Members of the diverse heterochromatin protein 1 (HP1) family play crucial roles in heterochromatin formation and maintenance. Despite the similar affinities of their chromodomains for di- and tri-methylated histone H3 lysine 9 (H3K9me2/3), different HP1 proteins exhibit distinct chromatin-binding patterns, likely due to interactions with various specificity factors. Previously, we showed that the chromatin-binding pattern of the HP1 protein Rhino, a crucial factor of the Drosophila PIWI-interacting RNA (piRNA) pathway, is largely defined by a DNA sequence-specific C2H2 zinc finger protein named Kipferl (Baumgartner et al., 2022). Here, we elucidate the molecular basis of the interaction between Rhino and its guidance factor Kipferl. Through phylogenetic analyses, structure prediction, and in vivo genetics, we identify a single amino acid change within Rhino’s chromodomain, G31D, that does not affect H3K9me2/3 binding but disrupts the interaction between Rhino and Kipferl. Flies carrying the rhinoG31D mutation phenocopy kipferl mutant flies, with Rhino redistributing from piRNA clusters to satellite repeats, causing pronounced changes in the ovarian piRNA profile of rhinoG31D flies. Thus, Rhino’s chromodomain functions as a dual-specificity module, facilitating interactions with both a histone mark and a DNA-binding protein.