Ligand modulation of sidechain dynamics in a wild-type human GPCR

  1. Lindsay D Clark
  2. Igor Dikiy
  3. Karen Chapman
  4. Karin E J Rödström
  5. James Aramini
  6. Michael V LeVine
  7. George Khelashvili
  8. Søren G F Rasmussen
  9. Kevin H Gardner  Is a corresponding author
  10. Daniel M Rosenbaum  Is a corresponding author
  1. The University of Texas Southwestern Medical Center, United States
  2. CUNY Advanced Science Research Center, United States
  3. University of Copenhagen, Denmark
  4. Weill Cornell Medical College, United States

Abstract

GPCRs regulate all aspects of human physiology, and biophysical studies have deepened our understanding of GPCR conformational regulation by different ligands. Yet there is no experimental evidence for how sidechain dynamics control allosteric transitions between GPCR conformations. To address this deficit, we generated samples of a wild-type GPCR (A2AR) that are deuterated apart from 1H/13C NMR probes at isoleucine δ1 methyl groups, which facilitated 1H/13C methyl TROSY NMR measurements with opposing ligands. Our data indicate that low [Na+] is required to allow large agonist-induced structural changes in A2AR, and that patterns of sidechain dynamics substantially differ between agonist (NECA) and inverse agonist (ZM241385) bound receptors, with the inverse agonist suppressing fast ps-ns timescale motions at the G protein binding site. Our approach to GPCR NMR creates a framework for exploring how different regions of a receptor respond to different ligands or signaling proteins through modulation of fast ps-ns sidechain dynamics.

Data availability

The following data sets were generated
The following previously published data sets were used

Article and author information

Author details

  1. Lindsay D Clark

    Department of Biophysics, The University of Texas Southwestern Medical Center, Dallas, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-6879-6883
  2. Igor Dikiy

    Structural Biology Initiative, CUNY Advanced Science Research Center, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-8155-7788
  3. Karen Chapman

    Department of Biophysics, The University of Texas Southwestern Medical Center, Dallas, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Karin E J Rödström

    Department of Neuroscience and Pharmacology, University of Copenhagen, Copenhagen, Denmark
    Competing interests
    The authors declare that no competing interests exist.
  5. James Aramini

    Structural Biology Initiative, CUNY Advanced Science Research Center, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Michael V LeVine

    Department of Physiology and Biophysics, Weill Cornell Medical College, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. George Khelashvili

    Department of Physiology and Biophysics, Weill Cornell Medical College, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-7235-8579
  8. Søren G F Rasmussen

    Department of Neuroscience and Pharmacology, University of Copenhagen, Copenhagen, Denmark
    Competing interests
    The authors declare that no competing interests exist.
  9. Kevin H Gardner

    Structural Biology Initiative, CUNY Advanced Science Research Center, New York, United States
    For correspondence
    Kevin.Gardner@asrc.cuny.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-8671-2556
  10. Daniel M Rosenbaum

    Department of Biophysics, The University of Texas Southwestern Medical Center, Dallas, United States
    For correspondence
    dan.rosenbaum@utsouthwestern.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-7174-4993

Funding

Welch Foundation (I-1770)

  • Daniel M Rosenbaum

National Institutes of Health (R01GM113050)

  • Daniel M Rosenbaum

National Institutes of Health (R01GM106239)

  • Kevin H Gardner

National Science Foundation (1000136529)

  • Lindsay D Clark

American Heart Association (16PRE27200004)

  • Lindsay D Clark

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2017, Clark et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,802
    views
  • 755
    downloads
  • 74
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Lindsay D Clark
  2. Igor Dikiy
  3. Karen Chapman
  4. Karin E J Rödström
  5. James Aramini
  6. Michael V LeVine
  7. George Khelashvili
  8. Søren G F Rasmussen
  9. Kevin H Gardner
  10. Daniel M Rosenbaum
(2017)
Ligand modulation of sidechain dynamics in a wild-type human GPCR
eLife 6:e28505.
https://doi.org/10.7554/eLife.28505

Share this article

https://doi.org/10.7554/eLife.28505

Further reading

    1. Biochemistry and Chemical Biology
    2. Genetics and Genomics
    Kira Breunig, Xuifen Lei ... Luiz O Penalva
    Research Article

    RNA binding proteins (RBPs) containing intrinsically disordered regions (IDRs) are present in diverse molecular complexes where they function as dynamic regulators. Their characteristics promote liquid-liquid phase separation (LLPS) and the formation of membraneless organelles such as stress granules and nucleoli. IDR-RBPs are particularly relevant in the nervous system and their dysfunction is associated with neurodegenerative diseases and brain tumor development. Serpine1 mRNA-binding protein 1 (SERBP1) is a unique member of this group, being mostly disordered and lacking canonical RNA-binding domains. We defined SERBP1’s interactome, uncovered novel roles in splicing, cell division and ribosomal biogenesis, and showed its participation in pathological stress granules and Tau aggregates in Alzheimer’s brains. SERBP1 preferentially interacts with other G-quadruplex (G4) binders, implicated in different stages of gene expression, suggesting that G4 binding is a critical component of SERBP1 function in different settings. Similarly, we identified important associations between SERBP1 and PARP1/polyADP-ribosylation (PARylation). SERBP1 interacts with PARP1 and its associated factors and influences PARylation. Moreover, protein complexes in which SERBP1 participates contain mostly PARylated proteins and PAR binders. Based on these results, we propose a feedback regulatory model in which SERBP1 influences PARP1 function and PARylation, while PARylation modulates SERBP1 functions and participation in regulatory complexes.

    1. Biochemistry and Chemical Biology
    Parnian Arafi, Sujan Devkota ... Michael S Wolfe
    Research Article

    Missense mutations in the amyloid precursor protein (APP) and presenilin-1 (PSEN1) cause early-onset familial Alzheimer’s disease (FAD) and alter proteolytic production of secreted 38-to-43-residue amyloid β-peptides (Aβ) by the PSEN1-containing γ-secretase complex, ostensibly supporting the amyloid hypothesis of pathogenesis. However, proteolysis of APP substrate by γ-secretase is processive, involving initial endoproteolysis to produce long Aβ peptides of 48 or 49 residues followed by carboxypeptidase trimming in mostly tripeptide increments. We recently reported evidence that FAD mutations in APP and PSEN1 cause deficiencies in early steps in processive proteolysis of APP substrate C99 and that this results from stalled γ-secretase enzyme-substrate and/or enzyme-intermediate complexes. These stalled complexes triggered synaptic degeneration in a Caenorhabditis elegans model of FAD independently of Aβ production. Here, we conducted full quantitative analysis of all proteolytic events on APP substrate by γ-secretase with six additional PSEN1 FAD mutations and found that all six are deficient in multiple processing steps. However, only one of these (F386S) was deficient in certain trimming steps but not in endoproteolysis. Fluorescence lifetime imaging microscopy in intact cells revealed that all six PSEN1 FAD mutations lead to stalled γ-secretase enzyme-substrate/intermediate complexes. The F386S mutation, however, does so only in Aβ-rich regions of the cells, not in C99-rich regions, consistent with the deficiencies of this mutant enzyme only in trimming of Aβ intermediates. These findings provide further evidence that FAD mutations lead to stalled and stabilized γ-secretase enzyme-substrate and/or enzyme-intermediate complexes and are consistent with the stalled process rather than the products of γ-secretase proteolysis as the pathogenic trigger.