Ligand modulation of sidechain dynamics in a wild-type human GPCR

  1. Lindsay D Clark
  2. Igor Dikiy
  3. Karen Chapman
  4. Karin E J Rödström
  5. James Aramini
  6. Michael V LeVine
  7. George Khelashvili
  8. Søren G F Rasmussen
  9. Kevin H Gardner  Is a corresponding author
  10. Daniel M Rosenbaum  Is a corresponding author
  1. The University of Texas Southwestern Medical Center, United States
  2. CUNY Advanced Science Research Center, United States
  3. University of Copenhagen, Denmark
  4. Weill Cornell Medical College, United States

Abstract

GPCRs regulate all aspects of human physiology, and biophysical studies have deepened our understanding of GPCR conformational regulation by different ligands. Yet there is no experimental evidence for how sidechain dynamics control allosteric transitions between GPCR conformations. To address this deficit, we generated samples of a wild-type GPCR (A2AR) that are deuterated apart from 1H/13C NMR probes at isoleucine δ1 methyl groups, which facilitated 1H/13C methyl TROSY NMR measurements with opposing ligands. Our data indicate that low [Na+] is required to allow large agonist-induced structural changes in A2AR, and that patterns of sidechain dynamics substantially differ between agonist (NECA) and inverse agonist (ZM241385) bound receptors, with the inverse agonist suppressing fast ps-ns timescale motions at the G protein binding site. Our approach to GPCR NMR creates a framework for exploring how different regions of a receptor respond to different ligands or signaling proteins through modulation of fast ps-ns sidechain dynamics.

Data availability

The following data sets were generated
The following previously published data sets were used

Article and author information

Author details

  1. Lindsay D Clark

    Department of Biophysics, The University of Texas Southwestern Medical Center, Dallas, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-6879-6883
  2. Igor Dikiy

    Structural Biology Initiative, CUNY Advanced Science Research Center, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-8155-7788
  3. Karen Chapman

    Department of Biophysics, The University of Texas Southwestern Medical Center, Dallas, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Karin E J Rödström

    Department of Neuroscience and Pharmacology, University of Copenhagen, Copenhagen, Denmark
    Competing interests
    The authors declare that no competing interests exist.
  5. James Aramini

    Structural Biology Initiative, CUNY Advanced Science Research Center, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Michael V LeVine

    Department of Physiology and Biophysics, Weill Cornell Medical College, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. George Khelashvili

    Department of Physiology and Biophysics, Weill Cornell Medical College, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-7235-8579
  8. Søren G F Rasmussen

    Department of Neuroscience and Pharmacology, University of Copenhagen, Copenhagen, Denmark
    Competing interests
    The authors declare that no competing interests exist.
  9. Kevin H Gardner

    Structural Biology Initiative, CUNY Advanced Science Research Center, New York, United States
    For correspondence
    Kevin.Gardner@asrc.cuny.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-8671-2556
  10. Daniel M Rosenbaum

    Department of Biophysics, The University of Texas Southwestern Medical Center, Dallas, United States
    For correspondence
    dan.rosenbaum@utsouthwestern.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-7174-4993

Funding

Welch Foundation (I-1770)

  • Daniel M Rosenbaum

National Institutes of Health (R01GM113050)

  • Daniel M Rosenbaum

National Institutes of Health (R01GM106239)

  • Kevin H Gardner

National Science Foundation (1000136529)

  • Lindsay D Clark

American Heart Association (16PRE27200004)

  • Lindsay D Clark

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2017, Clark et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 76
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

Share this article

https://doi.org/10.7554/eLife.28505

Further reading

    1. Biochemistry and Chemical Biology
    Meina He, Yongxin Tao ... Wenli Chen
    Research Article

    Copper is an essential enzyme cofactor in bacteria, but excess copper is highly toxic. Bacteria can cope with copper stress by increasing copper resistance and initiating chemorepellent response. However, it remains unclear how bacteria coordinate chemotaxis and resistance to copper. By screening proteins that interacted with the chemotaxis kinase CheA, we identified a copper-binding repressor CsoR that interacted with CheA in Pseudomonas putida. CsoR interacted with the HPT (P1), Dimer (P3), and HATPase_c (P4) domains of CheA and inhibited CheA autophosphorylation, resulting in decreased chemotaxis. The copper-binding of CsoR weakened its interaction with CheA, which relieved the inhibition of chemotaxis by CsoR. In addition, CsoR bound to the promoter of copper-resistance genes to inhibit gene expression, and copper-binding released CsoR from the promoter, leading to increased gene expression and copper resistance. P. putida cells exhibited a chemorepellent response to copper in a CheA-dependent manner, and CsoR inhibited the chemorepellent response to copper. Besides, the CheA-CsoR interaction also existed in proteins from several other bacterial species. Our results revealed a mechanism by which bacteria coordinately regulated chemotaxis and resistance to copper by CsoR.

    1. Biochemistry and Chemical Biology
    2. Genetics and Genomics
    Jiale Zhou, Ding Zhao ... Zhanjun Li
    Research Article

    5-Methylcytosine (m5C) is one of the posttranscriptional modifications in mRNA and is involved in the pathogenesis of various diseases. However, the capacity of existing assays for accurately and comprehensively transcriptome-wide m5C mapping still needs improvement. Here, we develop a detection method named DRAM (deaminase and reader protein assisted RNA methylation analysis), in which deaminases (APOBEC1 and TadA-8e) are fused with m5C reader proteins (ALYREF and YBX1) to identify the m5C sites through deamination events neighboring the methylation sites. This antibody-free and bisulfite-free approach provides transcriptome-wide editing regions which are highly overlapped with the publicly available bisulfite-sequencing (BS-seq) datasets and allows for a more stable and comprehensive identification of the m5C loci. In addition, DRAM system even supports ultralow input RNA (10 ng). We anticipate that the DRAM system could pave the way for uncovering further biological functions of m5C modifications.