The C. elegans neural editome reveals an ADAR target mRNA required for proper chemotaxis

  1. Sarah N Deffit
  2. Brian A Yee
  3. Aidan C Manning
  4. Suba Rajendren
  5. Pranathi Vadlamani
  6. Emily C Wheeler
  7. Alain Domissy
  8. Michael C Washburn
  9. Gene W Yeo  Is a corresponding author
  10. Heather A Hundley  Is a corresponding author
  1. Indiana University, Indiana
  2. University of California at San Diego, United States
  3. Agency for Science, Technology and Research, Singapore
  4. National University of Singapore, Singapore
6 figures, 1 table and 3 additional files

Figures

Neural cell isolation.

(A) To establish gating parameters L1 worms were digested into a single cell suspension and stained with a live/dead stain. SSC (side scatter) and FSC (forward scatter) were used to select the …

https://doi.org/10.7554/eLife.28625.003
Neural editome of C. elegans.

(a) RNA-seq libraries generated from C. elegans neural cells were sequenced using an Illumina NextSeq500 from 3 independent biological replicates. The data was processed with our SAILOR software …

https://doi.org/10.7554/eLife.28625.004
Differential gene expression in neural cells isolated from adr-2(-) worms.

RNA was isolated (A–B) from wild-type (WT) and adr-2(-) neural cells (3 or 4 biological replicates) or (C) WT and adr-2(-) L1 whole worms (2 biological replicates). qRT-PCR was used to determine the …

https://doi.org/10.7554/eLife.28625.005
Figure 4 with 1 supplement
Neural A-to-I RNA editing and expression of clec-41 is regulated by ADR-1 and ADR-2.

(A) Lysates from adr-1(-) worms and worms expressing FLAG-ADR-1 were subjected to a FLAG immunoprecipitation (IP). qRT-PCR was performed on both RNA from the input lysates as well as the IP samples. …

https://doi.org/10.7554/eLife.28625.006
Figure 4—figure supplement 1
Changes in editing of the clec-41 3’ UTR upon loss of adr-1.

RNA isolated from wild-type (WT) and adr-1(-) (A) neural cells or (B) whole L1 worms was subjected to reverse-transcription and PCR amplification followed by Sanger sequencing to assess editing …

https://doi.org/10.7554/eLife.28625.007
Figure 5 with 1 supplement
Rescue of clec-41 expression in adr-2(-) neural cells prevents disruptions in chemotaxis.

RNA was isolated from neural cells from wild-type (WT) as well as WT +clec-41 and adr-2(-)+clec-41 transgenic worms expressing clec-41 using the pan-neural rab-3 promoter for (A) qRT-PCR analysis of …

https://doi.org/10.7554/eLife.28625.008
Figure 5—figure supplement 1
Neural expression of clec-41 gene required for proper chemotaxis.

The Chemotaxis Index of WT, adr-2(-) as well as (A) WT +gfp:clec-41 3' UTR and adr-2(-)+gfp:clec-41 3' UTR or (B) WT and adr-2(-) expressing clec-41 in pharyngeal muscle tissue (clec-41 transgene …

https://doi.org/10.7554/eLife.28625.009
Figure 6 with 1 supplement
Deamination is required for both proper clec-41 expression and proper chemotaxis.

(A) Alignment of ADAR sequences from several species demonstrating conservation of the Glycine residue at position 184 in the C. elegans ADR-2 protein. This G is near the conserved HAE deamination …

https://doi.org/10.7554/eLife.28625.010
Figure 6—figure supplement 1
Specificity of ADR-2 Antibody.

Lysates from wild-type (WT), adr-1(-) and adr-2(-) worms were subjected to SDS-PAGE and immunoblotting with a custom ADR-2 antibody.

https://doi.org/10.7554/eLife.28625.011

Tables

Table 1
Sequences of all primers used in this study.
https://doi.org/10.7554/eLife.28625.012
Sequence
qRT-PCR
unc-64ForwardGccattgatcacgacgagcaaggagccgga
ReverseCcagcaatatcgagttgtctctgaattcgtc
myo-3Forwardccagaagaatatcagacgctacttggac
Reversetaacaataagctcttcttgctcctgtttg
gpd-3Forwardggaggagccaagaaggtc
Reverseaagtggagcaaggcagtt
ctl-2Forwardcaagccaactcaaggagtgaagaatctcac
Reversecatcttccatactggaaagtctcccttctc
dod-19Forwardccaggatatacgagcatcgattcgacaacc
Reversegaagctccaggatatctagtatctctcttg
hsp12.6Forwardcaatgtcctcgacgacgatgatcacttc
Reversegaatccttctttacattgtgctccatatgg
sre-6Forwardgaaagatgctttgcgacatgtttcgctgg
Reversecgggcatcatgatagaaatcaagagaag
clec-41Forwardactctggaagattctattccccaagc
Reversecgactgtaaatggaaattgatgcctgac
Editing Assays
daf-2RT primerctatttcgagcattgaggccgaattgaggc
Forward #1cgagaatgaatgaatattgtcagatgtcggag
Reverse #1cgagcgctacgtcgaattccaataactc
Forward #2gaaaatttggaagaaggtgagctggggg
Reverse #2ggtgggttaccgaaatttgagactttgc
clec-41RT primeracaccacgaaaaataattacagtgctggcc
Forward #1ctcaacagattcatctggccaaggttcagg
Reverse #1acaccacgaaaaataattacagtgctggcc
Forward #2ggttcaggattcagtgcaaatttttgggcg
Reverse #2agctcgagattactctacacttctcttctt
npr-17RT primergctattgagttcattgagccatttacctggg
Forward #1ccaacttcaacaaagatatcgatcaaatcg
Reverse #1cattgagccatttacctgggaaaatgtggc
Forward #2gacgacaacaacaacagcttcaacagc
Reverse #2gttccgtataagtgttttacccagaagcg
rbf-1RT primergtgtcaatgtgattgagccaaggctacctg
Forward #1ggggttattcaagtagtttcgcaac
Reverse #1tgagccaaggctacctgaatattttg
Forward #2ggggttattcaagtagtttcgcaac
Reverse #2gtgagaagaagaggaagatggaatattgatg
crtc-1RT primerctctaatgccttcagattggcgccacctac
Forward #1ccaccaaacacccaacaactcattccatg
Reverse #1ccttcagattggcgccacctacaacatgg
rgef-1RT primergaggaaagtgtgtggaagactggtg
Forward #1ggaagtacaccagatgaagaaattggtcttg
Reverse #1gcgtagagatcaaacaagtgggatagg
F23A7.3RT primerctaactgccaacaaacgactatctcaaatg
Forward #1cacaactctcttgctggataggtccgaacg
Reverse #1ctaactgccaacaaacgactatctcaaatg
Forward #2gctggataggtccgaacgtcgtctaatg
Reverse #2ctattctcatggagcatctgccattcc

Additional files

Supplementary file 1

A-to-I editing sites identified in neural cells.

The high confidence editing sites identified by the bioinformatics pipeline are listed on the first sheet of the excel document (RNA-seq Identified Sites). The chromosome number (Column A) and coordinate in ce11 reference genome (Column B) are given for each predicted editing site. The approximate editing percentage (Column C) based on the frequency of reads with guanosine at that coordinate within unique reads as well as the number of unique reads covering that position (Column D) is listed. The predicted editing site was assigned (described in detail in the methods section) to a genic region (Column E) and a gene (Column F and G). A list of editing sites identified using Sanger sequencing editing assays from mRNAs identified by the bioinformatics pipeline are listed on the second sheet of the excel document (Sanger-seq Verification). Gene-specific reverse transcription followed by PCR amplification and Sanger sequencing was used to examine editing events in the indicated genes (Column A). The chromosome number (Column B) and coordinate in ce11 reference genome (Column C) are given for each adenosine to inosine detected as well as the percent editing as determined using the RNA-seq data (Column D). The methods used to detect the A-to-I change was listed (Column D and E) as well as confirmation (yes), decline (no), or inability to accurately determine (ND) the presence of A-to-I editing at a given adenosine. A list of all genes and the novel genes identified by the pipeline as edited are listed on the third sheet of the excel document (Edited Genes). All edited genes (Column A and B) were aligned with a document containing all identified editing sites in C. elegans from numerous published RNA-seq data sets (Supplementary file 3 [Goldstein et al., 2017]). Novel edited genes identified in this study are listed (Column C and D). Genes identified as edited by SAILOR were queried using Wormbase to identify genes that regulate chemotaxis and/or locomotion and these genes are listed on sheet four of the excel document (Locomotion and Chemotaxis Genes). The wormbase IDs and gene names (Column A and B) are listed for genes identified as regulators of this biological process. The genes were then aligned with an unpublished RNA-seq data set of RNAs bound by ADR-1 (Column C).

https://doi.org/10.7554/eLife.28625.013
Supplementaty file 2

Differential gene expression identified from the transcriptome-wide RNA-seq.

Genes whose transcripts exhibited ≥2 fold change in expression between wild-type and adr-2(-) neural cells are listed. Upregulated (Sheet 1) and downregulated (Sheet 2) genes are listed by gene name (Column A) and Wormbase ID (Column B). The base Mean, or mean expression of each gene normalized to sequencing depth for all samples is listed (Column C), as well as the fold change in expression observed when comparing the wild-type to adr-2(-) (Column D) and the adjusted p-value from DESeq2 (Column E). Genes whose expression was examined by qRT-PCR are marked with yellow and listed as verified (Column F). The four edited genes are listed as Edited (Column G).

https://doi.org/10.7554/eLife.28625.014
Transparent reporting form
https://doi.org/10.7554/eLife.28625.015

Download links