The C. elegans neural editome reveals an ADAR target mRNA required for proper chemotaxis

  1. Sarah N Deffit
  2. Brian A Yee
  3. Aidan C Manning
  4. Suba Rajendren
  5. Pranathi Vadlamani
  6. Emily C Wheeler
  7. Alain Domissy
  8. Michael C Washburn
  9. Gene W Yeo  Is a corresponding author
  10. Heather A Hundley  Is a corresponding author
  1. Indiana University, United States
  2. University of California at San Diego, United States
  3. University of California, San Diego, United States

Abstract

ADAR proteins alter gene expression both by catalyzing adenosine (A) to inosine (I) RNA editing and binding to regulatory elements in target RNAs. Loss of ADARs affects neuronal function in all animals studied to date. Caenorhabditis elegans lacking ADARs exhibit reduced chemotaxis, but the targets responsible for this phenotype remain unknown. To identify critical neural ADAR targets in C. elegans, we performed an unbiased assessment of the effects of ADR-2, the only A-to-I editing enzyme in C. elegans, on the neural transcriptome. Development and implementation of publicly available software, SAILOR, identified 7,361 A-to-I editing events across the neural transcriptome. Intersecting the neural editome with adr-2 associated gene expression changes, revealed an edited mRNA, clec-41, whose neural expression is dependent on deamination. Restoring clec-41 expression in adr-2 deficient neural cells rescued the chemotaxis defect, providing the first evidence that neuronal phenotypes of ADAR mutants can be caused by altered gene expression.

Article and author information

Author details

  1. Sarah N Deffit

    Medical Sciences Program, Indiana University, Bloomington, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Brian A Yee

    Department of Cellular and Molecular Medicine, Stem Cell Program, Institute for Genomic Medicine, University of California at San Diego, La Jolla, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Aidan C Manning

    Medical Sciences Program, Indiana University, Bloomington, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Suba Rajendren

    Department of Biology, Indiana University, Bloomington, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Pranathi Vadlamani

    Medical Sciences Program, Indiana University, Bloomington, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Emily C Wheeler

    Department of Cellular and Molecular Medicine, Stem Cell Program, Institute for Genomic Medicine, University of California at San Diego, La Jolla, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Alain Domissy

    Department of Cellular and Molecular Medicine, Stem Cell Program, Institute for Genomic Medicine, University of California at San Diego, La Jolla, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Michael C Washburn

    Department of Biology, Indiana University, Bloomington, United States
    Competing interests
    The authors declare that no competing interests exist.
  9. Gene W Yeo

    Department of Cellular and Molecular Medicine, Stem Cell Program, Institute for Genomic Medicine, University of California, San Diego, La Jolla, United States
    For correspondence
    geneyeo@ucsd.edu
    Competing interests
    The authors declare that no competing interests exist.
  10. Heather A Hundley

    Medical Sciences Program, Indiana University, Bloomington, United States
    For correspondence
    hahundle@indiana.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-9106-9016

Funding

American Cancer Society (RSG-15-051-RMC)

  • Heather A Hundley

Indiana Clinical and Translational Sciences Institute

  • Sarah N Deffit

National Science Foundation

  • Emily C Wheeler

National Institutes of Health (1F32GM119257-01A1)

  • Sarah N Deffit

National Institutes of Health (T32GM00866)

  • Emily C Wheeler

National Institutes of Health (HG004659)

  • Gene W Yeo

National Institutes of Health (NS075449)

  • Gene W Yeo

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Oliver Hobert, Howard Hughes Medical Institute, Columbia University, United States

Version history

  1. Received: May 14, 2017
  2. Accepted: September 18, 2017
  3. Accepted Manuscript published: September 19, 2017 (version 1)
  4. Version of Record published: October 17, 2017 (version 2)
  5. Version of Record updated: October 23, 2017 (version 3)
  6. Version of Record updated: February 12, 2018 (version 4)

Copyright

© 2017, Deffit et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,016
    views
  • 409
    downloads
  • 31
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Sarah N Deffit
  2. Brian A Yee
  3. Aidan C Manning
  4. Suba Rajendren
  5. Pranathi Vadlamani
  6. Emily C Wheeler
  7. Alain Domissy
  8. Michael C Washburn
  9. Gene W Yeo
  10. Heather A Hundley
(2017)
The C. elegans neural editome reveals an ADAR target mRNA required for proper chemotaxis
eLife 6:e28625.
https://doi.org/10.7554/eLife.28625

Share this article

https://doi.org/10.7554/eLife.28625

Further reading

    1. Cell Biology
    2. Chromosomes and Gene Expression
    Lucie Crhak Khaitova, Pavlina Mikulkova ... Karel Riha
    Research Article

    Heat stress is a major threat to global crop production, and understanding its impact on plant fertility is crucial for developing climate-resilient crops. Despite the known negative effects of heat stress on plant reproduction, the underlying molecular mechanisms remain poorly understood. Here, we investigated the impact of elevated temperature on centromere structure and chromosome segregation during meiosis in Arabidopsis thaliana. Consistent with previous studies, heat stress leads to a decline in fertility and micronuclei formation in pollen mother cells. Our results reveal that elevated temperature causes a decrease in the amount of centromeric histone and the kinetochore protein BMF1 at meiotic centromeres with increasing temperature. Furthermore, we show that heat stress increases the duration of meiotic divisions and prolongs the activity of the spindle assembly checkpoint during meiosis I, indicating an impaired efficiency of the kinetochore attachments to spindle microtubules. Our analysis of mutants with reduced levels of centromeric histone suggests that weakened centromeres sensitize plants to elevated temperature, resulting in meiotic defects and reduced fertility even at moderate temperatures. These results indicate that the structure and functionality of meiotic centromeres in Arabidopsis are highly sensitive to heat stress, and suggest that centromeres and kinetochores may represent a critical bottleneck in plant adaptation to increasing temperatures.

    1. Chromosomes and Gene Expression
    Allison Coté, Aoife O'Farrell ... Arjun Raj
    Research Article

    Splicing is the stepwise molecular process by which introns are removed from pre-mRNA and exons are joined together to form mature mRNA sequences. The ordering and spatial distribution of these steps remain controversial, with opposing models suggesting splicing occurs either during or after transcription. We used single-molecule RNA FISH, expansion microscopy, and live-cell imaging to reveal the spatiotemporal distribution of nascent transcripts in mammalian cells. At super-resolution levels, we found that pre-mRNA formed clouds around the transcription site. These clouds indicate the existence of a transcription-site-proximal zone through which RNA move more slowly than in the nucleoplasm. Full-length pre-mRNA undergo continuous splicing as they move through this zone following transcription, suggesting a model in which splicing can occur post-transcriptionally but still within the proximity of the transcription site, thus seeming co-transcriptional by most assays. These results may unify conflicting reports of co-transcriptional versus post-transcriptional splicing.