Lipids and ions traverse the membrane by the same physical pathway in the nhTMEM16 scramblase

  1. Tao Jiang  Is a corresponding author
  2. Kuai Yu
  3. H Criss Hartzell  Is a corresponding author
  4. Emad Tajkhorshid  Is a corresponding author
  1. University of Illinois at Urbana-Champaign, United States
  2. Emory University School of Medicine, United States

Abstract

From bacteria to mammals, different phospholipid species are segregated between the inner and outer leaflets of the plasma membrane by ATP-dependent lipid transporters. Disruption of this asymmetry by ATP-independent phospholipid scrambling is important in cellular signaling, but its mechanism remains incompletely understood. Using MD simulations coupled with experimental assays, we show that the surface hydrophilic transmembrane cavity exposed to the lipid bilayer on the fungal scramblase nhTMEM16 serves as the pathway for both lipid translocation and ion conduction across the membrane. Ca2+ binding stimulates its open conformation by altering the structure of transmembrane helices that line the cavity. We have identified key amino acids necessary for phospholipid scrambling and validated the idea that ions permeate TMEM16 Cl- channels via a structurally homologous pathway by showing that mutation of two residues in the pore region of the TMEM16A Ca2+-activated Cl- channel convert it into a robust scramblase.

Article and author information

Author details

  1. Tao Jiang

    Department of Biochemistry, Center for Biophysics and Computational Biology, Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, United States
    For correspondence
    jiang57@illinois.edu
    Competing interests
    The authors declare that no competing interests exist.
  2. Kuai Yu

    Department of Cell Biology, Emory University School of Medicine, Atlanta, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. H Criss Hartzell

    Department of Cell Biology, Emory University School of Medicine, Atlanta, United States
    For correspondence
    criss.hartzell@emory.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-3393-1528
  4. Emad Tajkhorshid

    Department of Biochemistry, Center for Biophysics and Computational Biology, Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, United States
    For correspondence
    emad@life.illinois.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-8434-1010

Funding

National Institutes of Health (R01-GM086749)

  • Emad Tajkhorshid

National Institutes of Health (U54- GM087519)

  • Emad Tajkhorshid

National Institutes of Health (P41-GM104601)

  • Emad Tajkhorshid

National Institutes of Health (R01-EY0114852)

  • H Criss Hartzell

National Institutes of Health (R01-AR067786)

  • H Criss Hartzell

National Science Foundation (MCA06N060)

  • Emad Tajkhorshid

National Institutes of Health (R01-GM123455)

  • Emad Tajkhorshid

Muscular Dystrophy Association (Research Grant)

  • H Criss Hartzell

National Centre for Supercomputing Applications (Blue Waters)

  • Emad Tajkhorshid

This research is supported by grants from the National Institutes of Health R01-GM086749, R01-GM123455, U54- GM087519, and P41-GM104601 to ET, and R01-EY0114852 and R01-AR067786 to HCH, and a grant from the Muscular Dystrophy Foundation to HCH. Simulations in this study have been performed using allocations at National Science Foundation Supercomputing Centers (XSEDE grant number MCA06N060), and at the NCSA Blue Waters.

Copyright

© 2017, Jiang et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 4,042
    views
  • 797
    downloads
  • 85
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Tao Jiang
  2. Kuai Yu
  3. H Criss Hartzell
  4. Emad Tajkhorshid
(2017)
Lipids and ions traverse the membrane by the same physical pathway in the nhTMEM16 scramblase
eLife 6:e28671.
https://doi.org/10.7554/eLife.28671

Share this article

https://doi.org/10.7554/eLife.28671

Further reading

    1. Structural Biology and Molecular Biophysics
    Xinyu Gu, Akashnathan Aranganathan, Pratyush Tiwary
    Research Article

    Small-molecule drug design hinges on obtaining co-crystallized ligand-protein structures. Despite AlphaFold2’s strides in protein native structure prediction, its focus on apo structures overlooks ligands and associated holo structures. Moreover, designing selective drugs often benefits from the targeting of diverse metastable conformations. Therefore, direct application of AlphaFold2 models in virtual screening and drug discovery remains tentative. Here, we demonstrate an AlphaFold2-based framework combined with all-atom enhanced sampling molecular dynamics and Induced Fit docking, named AF2RAVE-Glide, to conduct computational model-based small-molecule binding of metastable protein kinase conformations, initiated from protein sequences. We demonstrate the AF2RAVE-Glide workflow on three different mammalian protein kinases and their type I and II inhibitors, with special emphasis on binding of known type II kinase inhibitors which target the metastable classical DFG-out state. These states are not easy to sample from AlphaFold2. Here, we demonstrate how with AF2RAVE these metastable conformations can be sampled for different kinases with high enough accuracy to enable subsequent docking of known type II kinase inhibitors with more than 50% success rates across docking calculations. We believe the protocol should be deployable for other kinases and more proteins generally.

    1. Structural Biology and Molecular Biophysics
    Dipti Ranjan Lenka, Shakti Virendra Dahe ... Atul Kumar
    Research Article

    Loss-of-function Parkin mutations lead to early-onset of Parkinson’s disease. Parkin is an auto-inhibited ubiquitin E3 ligase activated by dual phosphorylation of its ubiquitin-like (Ubl) domain and ubiquitin by the PINK1 kinase. Herein, we demonstrate a competitive binding of the phospho-Ubl and RING2 domains towards the RING0 domain, which regulates Parkin activity. We show that phosphorylated Parkin can complex with native Parkin, leading to the activation of autoinhibited native Parkin in trans. Furthermore, we show that the activator element (ACT) of Parkin is required to maintain the enzyme kinetics, and the removal of ACT slows the enzyme catalysis. We also demonstrate that ACT can activate Parkin in trans but less efficiently than when present in the cis molecule. Furthermore, the crystal structure reveals a donor ubiquitin binding pocket in the linker connecting REP and RING2, which plays a crucial role in Parkin activity.