1. Structural Biology and Molecular Biophysics
  2. Computational and Systems Biology
Download icon

Lipids and ions traverse the membrane by the same physical pathway in the nhTMEM16 scramblase

  1. Tao Jiang  Is a corresponding author
  2. Kuai Yu
  3. H Criss Hartzell  Is a corresponding author
  4. Emad Tajkhorshid  Is a corresponding author
  1. University of Illinois at Urbana-Champaign, United States
  2. Emory University School of Medicine, United States
Research Article
  • Cited 49
  • Views 3,442
  • Annotations
Cite this article as: eLife 2017;6:e28671 doi: 10.7554/eLife.28671

Abstract

From bacteria to mammals, different phospholipid species are segregated between the inner and outer leaflets of the plasma membrane by ATP-dependent lipid transporters. Disruption of this asymmetry by ATP-independent phospholipid scrambling is important in cellular signaling, but its mechanism remains incompletely understood. Using MD simulations coupled with experimental assays, we show that the surface hydrophilic transmembrane cavity exposed to the lipid bilayer on the fungal scramblase nhTMEM16 serves as the pathway for both lipid translocation and ion conduction across the membrane. Ca2+ binding stimulates its open conformation by altering the structure of transmembrane helices that line the cavity. We have identified key amino acids necessary for phospholipid scrambling and validated the idea that ions permeate TMEM16 Cl- channels via a structurally homologous pathway by showing that mutation of two residues in the pore region of the TMEM16A Ca2+-activated Cl- channel convert it into a robust scramblase.

Article and author information

Author details

  1. Tao Jiang

    Department of Biochemistry, Center for Biophysics and Computational Biology, Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, United States
    For correspondence
    jiang57@illinois.edu
    Competing interests
    The authors declare that no competing interests exist.
  2. Kuai Yu

    Department of Cell Biology, Emory University School of Medicine, Atlanta, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. H Criss Hartzell

    Department of Cell Biology, Emory University School of Medicine, Atlanta, United States
    For correspondence
    criss.hartzell@emory.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-3393-1528
  4. Emad Tajkhorshid

    Department of Biochemistry, Center for Biophysics and Computational Biology, Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, United States
    For correspondence
    emad@life.illinois.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-8434-1010

Funding

National Institutes of Health (R01-GM086749)

  • Emad Tajkhorshid

National Institutes of Health (U54- GM087519)

  • Emad Tajkhorshid

National Institutes of Health (P41-GM104601)

  • Emad Tajkhorshid

National Institutes of Health (R01-EY0114852)

  • H Criss Hartzell

National Institutes of Health (R01-AR067786)

  • H Criss Hartzell

National Science Foundation (MCA06N060)

  • Emad Tajkhorshid

National Institutes of Health (R01-GM123455)

  • Emad Tajkhorshid

Muscular Dystrophy Association (Research Grant)

  • H Criss Hartzell

National Centre for Supercomputing Applications (Blue Waters)

  • Emad Tajkhorshid

This research is supported by grants from the National Institutes of Health R01-GM086749, R01-GM123455, U54- GM087519, and P41-GM104601 to ET, and R01-EY0114852 and R01-AR067786 to HCH, and a grant from the Muscular Dystrophy Foundation to HCH. Simulations in this study have been performed using allocations at National Science Foundation Supercomputing Centers (XSEDE grant number MCA06N060), and at the NCSA Blue Waters.

Reviewing Editor

  1. Nir Ben-Tal, Tel Aviv University, Israel

Publication history

  1. Received: May 18, 2017
  2. Accepted: September 8, 2017
  3. Accepted Manuscript published: September 16, 2017 (version 1)
  4. Version of Record published: October 4, 2017 (version 2)

Copyright

© 2017, Jiang et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,442
    Page views
  • 714
    Downloads
  • 49
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, Scopus, PubMed Central.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Download citations (links to download the citations from this article in formats compatible with various reference manager tools)

Open citations (links to open the citations from this article in various online reference manager services)

Further reading

    1. Cell Biology
    2. Structural Biology and Molecular Biophysics
    Carolina Franco Nitta et al.
    Research Article

    Crosstalk between different receptor tyrosine kinases (RTKs) is thought to drive oncogenic signaling and allow therapeutic escape. EGFR and RON are two such RTKs from different subfamilies, which engage in crosstalk through unknown mechanisms. We combined high-resolution imaging with biochemical and mutational studies to ask how EGFR and RON communicate. EGF stimulation promotes EGFR-dependent phosphorylation of RON, but ligand stimulation of RON does not trigger EGFR phosphorylation – arguing that crosstalk is unidirectional. Nanoscale imaging reveals association of EGFR and RON in common plasma membrane microdomains. Two-color single particle tracking captured formation of complexes between RON and EGF-bound EGFR. Our results further show that RON is a substrate for EGFR kinase, and that transactivation of RON requires formation of a signaling competent EGFR dimer. These results support a role for direct EGFR/RON interactions in propagating crosstalk, such that EGF-stimulated EGFR phosphorylates RON to activate RON-directed signaling.

    1. Structural Biology and Molecular Biophysics
    Shan Zhou et al.
    Research Article

    Pathogenic mycobacteria pose a sustained threat to global human health. Recently, cytochrome bcc complexes have gained interest as targets for antibiotic drug development. However, there is currently no structural information for the cytochrome bcc complex from these pathogenic mycobacteria. Here, we report the structures of Mycobacterium tuberculosis cytochrome bcc alone (2.68 Å resolution) and in complex with clinical drug candidates Q203 (2.67 Å resolution) and TB47 (2.93 Å resolution) determined by single-particle cryo-electron microscopy. M. tuberculosis cytochrome bcc forms a dimeric assembly with endogenous menaquinone/menaquinol bound at the quinone/quinol-binding pockets. We observe Q203 and TB47 bound at the quinol-binding site and stabilized by hydrogen bonds with the side chains of QcrBThr313 and QcrBGlu314, residues that are conserved across pathogenic mycobacteria. These high-resolution images provide a basis for the design of new mycobacterial cytochrome bcc inhibitors that could be developed into broad-spectrum drugs to treat mycobacterial infections.