Kinesin motility driven by subdomain dynamics

  1. Wonmuk Hwang  Is a corresponding author
  2. Matthew Lang  Is a corresponding author
  3. Martin Karplus  Is a corresponding author
  1. Texas A&M University, United States
  2. Vanderbilt University, United States
  3. Harvard University, United States

Abstract

The microtubule (MT)-associated motor protein kinesin utilizes its conserved ATPase head to achieve diverse motility characteristics. Despite considerable knowledge about how its ATPase activity and MT binding are coupled to the motility cycle, the atomic mechanism of the core events remain to be found. To obtain insights into the mechanism, we performed 38.5 microseconds of all-atom molecular dynamics simulations of kinesin-MT complexes in different nucleotide states. Local subdomain dynamics were found to be essential for nucleotide processing. Catalytic water molecules are dynamically organized by the switch domains of the nucleotide binding pocket while ATP is torsionally strained. Hydrolysis products are 'pulled' by switch-I, and a new ATP is "captured" by a concerted motion of the α0/L5/switch-I trio. The dynamic and wet kinesin-MT interface is tuned for rapid interactions while maintaining specificity. The resulting mechanism provides the flexibility necessary for walking in the crowded cellular environment.

Article and author information

Author details

  1. Wonmuk Hwang

    Department of Biomedical Engineering, Texas A&M University, College Station, United States
    For correspondence
    hwm@tamu.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-7514-3186
  2. Matthew Lang

    Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, United States
    For correspondence
    matt.lang@vanderbilt.edu
    Competing interests
    The authors declare that no competing interests exist.
  3. Martin Karplus

    Department of Chemistry and Chemical Biology, Harvard University, Cambridge, United States
    For correspondence
    marci@tammy.harvard.edu
    Competing interests
    The authors declare that no competing interests exist.

Funding

National Institutes of Health (R01GM087677)

  • Wonmuk Hwang
  • Matthew Lang

PIttsburgh Supercomputing Center (Anton Supercomputer)

  • Wonmuk Hwang
  • Martin Karplus

Texas A&M Supercomputing Facility

  • Wonmuk Hwang

Texas Advanced Computing Center

  • Wonmuk Hwang

CHARMM Development Project

  • Martin Karplus

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2017, Hwang et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,083
    views
  • 471
    downloads
  • 38
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Wonmuk Hwang
  2. Matthew Lang
  3. Martin Karplus
(2017)
Kinesin motility driven by subdomain dynamics
eLife 6:e28948.
https://doi.org/10.7554/eLife.28948

Share this article

https://doi.org/10.7554/eLife.28948

Further reading

    1. Structural Biology and Molecular Biophysics
    Yuanyuan Wang, Fan Xu ... Yongning He
    Research Article

    SCARF1 (scavenger receptor class F member 1, SREC-1 or SR-F1) is a type I transmembrane protein that recognizes multiple endogenous and exogenous ligands such as modified low-density lipoproteins (LDLs) and is important for maintaining homeostasis and immunity. But the structural information and the mechanisms of ligand recognition of SCARF1 are largely unavailable. Here, we solve the crystal structures of the N-terminal fragments of human SCARF1, which show that SCARF1 forms homodimers and its epidermal growth factor (EGF)-like domains adopt a long-curved conformation. Then, we examine the interactions of SCARF1 with lipoproteins and are able to identify a region on SCARF1 for recognizing modified LDLs. The mutagenesis data show that the positively charged residues in the region are crucial for the interaction of SCARF1 with modified LDLs, which is confirmed by making chimeric molecules of SCARF1 and SCARF2. In addition, teichoic acids, a cell wall polymer expressed on the surface of gram-positive bacteria, are able to inhibit the interactions of modified LDLs with SCARF1, suggesting the ligand binding sites of SCARF1 might be shared for some of its scavenging targets. Overall, these results provide mechanistic insights into SCARF1 and its interactions with the ligands, which are important for understanding its physiological roles in homeostasis and the related diseases.

    1. Biochemistry and Chemical Biology
    2. Structural Biology and Molecular Biophysics
    Jie Luo, Jeff Ranish
    Tools and Resources

    Dynamic conformational and structural changes in proteins and protein complexes play a central and ubiquitous role in the regulation of protein function, yet it is very challenging to study these changes, especially for large protein complexes, under physiological conditions. Here, we introduce a novel isobaric crosslinker, Qlinker, for studying conformational and structural changes in proteins and protein complexes using quantitative crosslinking mass spectrometry. Qlinkers are small and simple, amine-reactive molecules with an optimal extended distance of ~10 Å, which use MS2 reporter ions for relative quantification of Qlinker-modified peptides derived from different samples. We synthesized the 2-plex Q2linker and showed that the Q2linker can provide quantitative crosslinking data that pinpoints key conformational and structural changes in biosensors, binary and ternary complexes composed of the general transcription factors TBP, TFIIA, and TFIIB, and RNA polymerase II complexes.