Direct modulation of aberrant brain network connectivity through real-time neurofeedback

  1. Michal Ramot  Is a corresponding author
  2. Sara Kimmich
  3. Javier Gonzalez-Castillo
  4. Vinai Roopchansingh
  5. Haroon Popal
  6. Emily White
  7. Stephen J Gotts
  8. Alex Martin
  1. National Institute of Mental Health, National Institutes of Health, United States

Abstract

The existence of abnormal connectivity patterns between resting state networks in neuropsychiatric disorders, including Autism Spectrum Disorder (ASD), has been well established. Traditional treatment methods in ASD are limited, and do not address the aberrant network structure. Using real-time fMRI neurofeedback, we directly trained 3 brain nodes in participants with ASD, in which the aberrant connectivity has been shown to correlate with symptom severity. Desired network connectivity patterns were reinforced in real-time, without participants' awareness of the training taking place. This training regimen produced large, significant long-term changes in correlations at the network level, and whole brain analysis revealed that the greatest changes were focused on the areas being trained. These changes were not found in the control group. Moreover, changes in ASD resting state connectivity following the training were correlated to changes in behavior, suggesting that neurofeedback can be used to directly alter complex, clinically relevant network connectivity patterns.

Data availability

The following data sets were generated

Article and author information

Author details

  1. Michal Ramot

    Laboratory of Brain and Cognition, National Institute of Mental Health, National Institutes of Health, Bethesda, United States
    For correspondence
    michal.ramot@nih.gov
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-9716-6469
  2. Sara Kimmich

    Laboratory of Brain and Cognition, National Institute of Mental Health, National Institutes of Health, Bethesda, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Javier Gonzalez-Castillo

    Laboratory of Brain and Cognition, National Institute of Mental Health, National Institutes of Health, Bethesda, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Vinai Roopchansingh

    Functional MRI Facility, National Institute of Mental Health, National Institutes of Health, Bethesda, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Haroon Popal

    Laboratory of Brain and Cognition, National Institute of Mental Health, National Institutes of Health, Bethesda, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Emily White

    Laboratory of Brain and Cognition, National Institute of Mental Health, National Institutes of Health, Bethesda, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Stephen J Gotts

    Laboratory of Brain and Cognition, National Institute of Mental Health, National Institutes of Health, Bethesda, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Alex Martin

    Laboratory of Brain and Cognition, National Institute of Mental Health, National Institutes of Health, Bethesda, United States
    Competing interests
    The authors declare that no competing interests exist.

Funding

National Institute of Mental Health (ZIAMH002920)

  • Michal Ramot
  • Sara Kimmich
  • Haroon Popal
  • Emily White
  • Stephen J Gotts
  • Alex Martin

National Institute of Mental Health (ZIAMH002783)

  • Javier Gonzalez-Castillo
  • Vinai Roopchansingh

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Human subjects: The experiment was approved by the NIMH Institutional Review Board, protocol number 10-M-0027, clinical trials number NCT01031407. Written informed consent and consent to publish were obtained from all participants. All procedures performed were in accordance with ethical standards set out by the Federal Policy for the Protection of Human Subjects (or 'Common Rule', U.S. Department of Health and Human Services Title 45 DFR 46).

Copyright

This is an open-access article, free of all copyright, and may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose. The work is made available under the Creative Commons CC0 public domain dedication.

Metrics

  • 4,433
    views
  • 703
    downloads
  • 98
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Michal Ramot
  2. Sara Kimmich
  3. Javier Gonzalez-Castillo
  4. Vinai Roopchansingh
  5. Haroon Popal
  6. Emily White
  7. Stephen J Gotts
  8. Alex Martin
(2017)
Direct modulation of aberrant brain network connectivity through real-time neurofeedback
eLife 6:e28974.
https://doi.org/10.7554/eLife.28974

Share this article

https://doi.org/10.7554/eLife.28974

Further reading

    1. Neuroscience
    Julieta Gomez-Frittelli, Gabrielle Frederique Devienne ... Julia A Kaltschmidt
    Research Article

    Intrinsic sensory neurons are an essential part of the enteric nervous system (ENS) and play a crucial role in gastrointestinal tract motility and digestion. Neuronal subtypes in the ENS have been distinguished by their electrophysiological properties, morphology, and expression of characteristic markers, notably neurotransmitters and neuropeptides. Here, we investigated synaptic cell adhesion molecules as novel cell-type markers in the ENS. Our work identifies two type II classic cadherins, Cdh6 and Cdh8, specific to sensory neurons in the mouse colon. We show that Cdh6+ neurons demonstrate all other distinguishing classifications of enteric sensory neurons including marker expression of Calcb and Nmu, Dogiel type II morphology and AH-type electrophysiology and IH current. Optogenetic activation of Cdh6+ sensory neurons in distal colon evokes retrograde colonic motor complexes (CMCs), while pharmacologic blockade of rhythmicity-associated current IH disrupts the spontaneous generation of CMCs. These findings provide the first demonstration of selective activation of a single neurochemical and functional class of enteric neurons and demonstrate a functional and critical role for sensory neurons in the generation of CMCs.

    1. Neuroscience
    Damian Koevoet, Laura Van Zantwijk ... Christoph Strauch
    Research Article

    What determines where to move the eyes? We recently showed that pupil size, a well-established marker of effort, also reflects the effort associated with making a saccade (‘saccade costs’). Here, we demonstrate saccade costs to critically drive saccade selection: when choosing between any two saccade directions, the least costly direction was consistently preferred. Strikingly, this principle even held during search in natural scenes in two additional experiments. When increasing cognitive demand experimentally through an auditory counting task, participants made fewer saccades and especially cut costly directions. This suggests that the eye-movement system and other cognitive operations consume similar resources that are flexibly allocated among each other as cognitive demand changes. Together, we argue that eye-movement behavior is tuned to adaptively minimize saccade-inherent effort.