Computationally-driven identification of antibody epitopes

  1. Casey K Hua
  2. Albert T Gacerez
  3. Charles L Sentman
  4. Margaret E Ackerman
  5. Yoonjoo Choi  Is a corresponding author
  6. Chris Bailey-Kellogg  Is a corresponding author
  1. Dartmouth College, United States
  2. Korea Advanced Institute for Science and Technology, Republic of Korea

Abstract

Understanding where antibodies recognize antigens can help define mechanisms of action and provide insights into progression of immune responses. We investigate the extent to which information about binding specificity implicitly encoded in amino acid sequence can be leveraged to identify antibody epitopes. In computationally-driven epitope localization, possible antibody-antigen binding modes are modeled, and targeted panels of antigen variants are designed to experimentally test these hypotheses. Prospective application of this approach to two antibodies enabled epitope localization using five or fewer variants per antibody, or alternatively, a six-variant panel for both simultaneously. Retrospective analysis of a variety of antibodies and antigens demonstrated an almost 90% success rate with an average of three antigen variants, further supporting the observation that the combination of computational modeling and protein design can reveal key determinants of antibody-antigen binding and enable efficient studies of collections of antibodies identified from polyclonal samples or engineered libraries.

Article and author information

Author details

  1. Casey K Hua

    Thayer School of Engineering, Dartmouth College, Hanover, United States
    Competing interests
    No competing interests declared.
  2. Albert T Gacerez

    Department of Microbiology and Immunology, Geisel School of Medicine, Dartmouth College, Lebanon, United States
    Competing interests
    No competing interests declared.
  3. Charles L Sentman

    Department of Microbiology and Immunology, Geisel School of Medicine, Dartmouth College, Lebanon, United States
    Competing interests
    No competing interests declared.
  4. Margaret E Ackerman

    Thayer School of Engineering, Dartmouth College, Hanover, United States
    Competing interests
    No competing interests declared.
  5. Yoonjoo Choi

    Department of Biological Sciences, Korea Advanced Institute for Science and Technology, Daejeon, Republic of Korea
    For correspondence
    yoonjoo.choi@kaist.ac.kr
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-9687-8093
  6. Chris Bailey-Kellogg

    Department of Computer Science, Dartmouth College, Hanover, United States
    For correspondence
    cbk@cs.dartmouth.edu
    Competing interests
    Chris Bailey-Kellogg, Dartmouth faculty and a co-member of Stealth Biologics, LLC, a Delaware biotechnology company. This author acknowledges that there is a potential financial conflict of interest related to his associations with this company, and he hereby affirms that the data presented in this paper is free of any bias. This work has been reviewed and approved as specified in Chris Bailey-Kellogg's Dartmouth conflict of interest management plans..
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-1860-0912

Funding

National Institutes of Health (R01 GM098977)

  • Chris Bailey-Kellogg

National Research Foundation of Korea (2016H1D3A1938246)

  • Yoonjoo Choi

National Science Foundation (CNS-1205521)

  • Chris Bailey-Kellogg

National Institutes of Health (5F30 AI122970-02)

  • Casey K Hua

National Institutes of Health (1R01AI102691)

  • Margaret E Ackerman

Center of Biomedical Research Excellence (8P30GM103415)

  • Charles L Sentman
  • Margaret E Ackerman

Allan U. Munck Education and Research Fund at Dartmouth

  • Charles L Sentman
  • Margaret E Ackerman

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Max Vasquez, Adimab Inc., United States

Version history

  1. Received: May 26, 2017
  2. Accepted: December 2, 2017
  3. Accepted Manuscript published: December 4, 2017 (version 1)
  4. Version of Record published: December 21, 2017 (version 2)

Copyright

© 2017, Hua et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 5,890
    views
  • 869
    downloads
  • 31
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Casey K Hua
  2. Albert T Gacerez
  3. Charles L Sentman
  4. Margaret E Ackerman
  5. Yoonjoo Choi
  6. Chris Bailey-Kellogg
(2017)
Computationally-driven identification of antibody epitopes
eLife 6:e29023.
https://doi.org/10.7554/eLife.29023

Share this article

https://doi.org/10.7554/eLife.29023

Further reading

    1. Cell Biology
    2. Structural Biology and Molecular Biophysics
    Shun Kai Yang, Shintaroh Kubo ... Khanh Huy Bui
    Research Article

    Acetylation of α-tubulin at the lysine 40 residue (αK40) by αTAT1/MEC-17 acetyltransferase modulates microtubule properties and occurs in most eukaryotic cells. Previous literatures suggest that acetylated microtubules are more stable and damage resistant. αK40 acetylation is the only known microtubule luminal post-translational modification site. The luminal location suggests that the modification tunes the lateral interaction of protofilaments inside the microtubule. In this study, we examined the effect of tubulin acetylation on the doublet microtubule (DMT) in the cilia of Tetrahymena thermophila using a combination of cryo-electron microscopy, molecular dynamics, and mass spectrometry. We found that αK40 acetylation exerts a small-scale effect on the DMT structure and stability by influencing the lateral rotational angle. In addition, comparative mass spectrometry revealed a link between αK40 acetylation and phosphorylation in cilia.

    1. Structural Biology and Molecular Biophysics
    Sebastian Jojoa-Cruz, Adrienne E Dubin ... Andrew B Ward
    Research Advance

    The dimeric two-pore OSCA/TMEM63 family has recently been identified as mechanically activated ion channels. Previously, based on the unique features of the structure of OSCA1.2, we postulated the potential involvement of several structural elements in sensing membrane tension (Jojoa-Cruz et al., 2018). Interestingly, while OSCA1, 2, and 3 clades are activated by membrane stretch in cell-attached patches (i.e. they are stretch-activated channels), they differ in their ability to transduce membrane deformation induced by a blunt probe (poking). Here, in an effort to understand the domains contributing to mechanical signal transduction, we used cryo-electron microscopy to solve the structure of Arabidopsis thaliana (At) OSCA3.1, which, unlike AtOSCA1.2, only produced stretch- but not poke-activated currents in our initial characterization (Murthy et al., 2018). Mutagenesis and electrophysiological assessment of conserved and divergent putative mechanosensitive features of OSCA1.2 reveal a selective disruption of the macroscopic currents elicited by poking without considerable effects on stretch-activated currents (SAC). Our results support the involvement of the amphipathic helix and lipid-interacting residues in the membrane fenestration in the response to poking. Our findings position these two structural elements as potential sources of functional diversity within the family.