A common directional tuning mechanism of Drosophila motion-sensing neurons in the ON and in the OFF pathway

  1. Juergen Haag  Is a corresponding author
  2. Abhishek Mishra
  3. Alexander Borst
  1. Max-Planck-Institute of Neurobiology, Germany
  2. Max Planck Institute of Neurobiology, Germany

Abstract

In the fruit fly optic lobe, T4 and T5 cells represent the first direction-selective neurons, with T4 cells responding selectively to moving brightness increments (ON) and T5 cells to brightness decrements (OFF). Both T4 and T5 cells comprise four subtypes with directional tuning to one of the four cardinal directions. We had previously found that upward-sensitive T4 cells implement both preferred direction enhancement and null direction suppression (Haag et al, 2016). Here, we asked whether this mechanism generalizes to OFF-selective T5 cells and to all four subtypes of both cell classes. We found that all four subtypes of both T4 and T5 cells implement both mechanisms, i.e. preferred direction enhancement and null direction inhibition, on opposing sides of their receptive fields. This gives rise to the high degree of direction selectivity observed in both T4 and T5 cells within each subpopulation.

Article and author information

Author details

  1. Juergen Haag

    Max-Planck-Institute of Neurobiology, Martinsried, Germany
    For correspondence
    haag@neuro.mpg.de
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-6535-0103
  2. Abhishek Mishra

    Max-Planck-Institute of Neurobiology, Martinsried, Germany
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-1933-1251
  3. Alexander Borst

    Max Planck Institute of Neurobiology, Martinsried, Germany
    Competing interests
    Alexander Borst, Reviewing editor, eLife.

Funding

Max-Planck-Gesellschaft

  • Juergen Haag
  • Abhishek Mishra
  • Alexander Borst

Deutsche Forschungsgemeinschaft (SFB 870)

  • Juergen Haag
  • Abhishek Mishra
  • Alexander Borst

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2017, Haag et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,015
    views
  • 291
    downloads
  • 42
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Juergen Haag
  2. Abhishek Mishra
  3. Alexander Borst
(2017)
A common directional tuning mechanism of Drosophila motion-sensing neurons in the ON and in the OFF pathway
eLife 6:e29044.
https://doi.org/10.7554/eLife.29044

Share this article

https://doi.org/10.7554/eLife.29044

Further reading

    1. Neuroscience
    Livio Oboti, Federico Pedraja ... Rüdiger Krahe
    Research Article

    Since the pioneering work by Moeller, Szabo, and Bullock, weakly electric fish have served as a valuable model for investigating spatial and social cognitive abilities in a vertebrate taxon usually less accessible than mammals or other terrestrial vertebrates. These fish, through their electric organ, generate low-intensity electric fields to navigate and interact with conspecifics, even in complete darkness. The brown ghost knifefish is appealing as a study subject due to a rich electric ‘vocabulary’, made by individually variable and sex-specific electric signals. These are mainly characterized by brief frequency modulations of the oscillating dipole moment continuously generated by their electric organ, and are known as chirps. Different types of chirps are believed to convey specific and behaviorally salient information, serving as behavioral readouts for different internal states during behavioral observations. Despite the success of this model in neuroethology over the past seven decades, the code to decipher their electric communication remains unknown. To this aim, in this study we re-evaluate the correlations between signals and behavior offering an alternative, and possibly complementary, explanation for why these freshwater bottom dwellers emit electric chirps. By uncovering correlations among chirping, electric field geometry, and detectability in enriched environments, we present evidence for a previously unexplored role of chirps as specialized self-directed signals, enhancing conspecific electrolocation during social encounters.

    1. Neuroscience
    Lisa Reisinger, Gianpaolo Demarchi ... Nathan Weisz
    Research Article

    Phantom perceptions like tinnitus occur without any identifiable environmental or bodily source. The mechanisms and key drivers behind tinnitus are poorly understood. The dominant framework, suggesting that tinnitus results from neural hyperactivity in the auditory pathway following hearing damage, has been difficult to investigate in humans and has reached explanatory limits. As a result, researchers have tried to explain perceptual and potential neural aberrations in tinnitus within a more parsimonious predictive-coding framework. In two independent magnetoencephalography studies, participants passively listened to sequences of pure tones with varying levels of regularity (i.e. predictability) ranging from random to ordered. Aside from being a replication of the first study, the pre-registered second study, including 80 participants, ensured rigorous matching of hearing status, as well as age, sex, and hearing loss, between individuals with and without tinnitus. Despite some changes in the details of the paradigm, both studies equivalently reveal a group difference in neural representation, based on multivariate pattern analysis, of upcoming stimuli before their onset. These data strongly suggest that individuals with tinnitus engage anticipatory auditory predictions differently to controls. While the observation of different predictive processes is robust and replicable, the precise neurocognitive mechanism underlying it calls for further, ideally longitudinal, studies to establish its role as a potential contributor to, and/or consequence of, tinnitus.