Conserved neural circuit structure across Drosophila larva development revealed by comparative connectomics

  1. Stephan Gerhard
  2. Ingrid Andrade
  3. Richard D Fetter
  4. Albert Cardona
  5. Casey M Schneider-Mizell  Is a corresponding author
  1. Janelia Research Campus, Howard Hughes Medical Institute, United States

Abstract

During postembryonic development, the nervous system must adapt to a growing body. How changes in neuronal structure and connectivity contribute to the maintenance of appropriate circuit function remains unclear. In a previous paper (Schneider-Mizell et al., 2016), we measured the cellular neuroanatomy underlying synaptic connectivity in Drosophila. Here, we examined how neuronal morphology and connectivity change between 1st instar and 3rd instar larval stages using serial section electron microscopy. We reconstructed nociceptive circuits in a larva of each stage and found consistent topographically arranged connectivity between identified neurons. Five-fold increases in each size, number of terminal dendritic branches, and total number of synaptic inputs were accompanied by cell-type specific connectivity changes that preserved the fraction of total synaptic input associated with each presynaptic partner. We propose that precise patterns of structural growth act to conserve the computational function of a circuit, for example determining the location of a dangerous stimulus.

Article and author information

Author details

  1. Stephan Gerhard

    Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Ingrid Andrade

    Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Richard D Fetter

    Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Albert Cardona

    Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-4941-6536
  5. Casey M Schneider-Mizell

    Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
    For correspondence
    schneidermizellc@janelia.hhmi.org
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-9477-3853

Funding

Howard Hughes Medical Institute

  • Stephan Gerhard
  • Ingrid Andrade
  • Richard D Fetter
  • Albert Cardona
  • Casey M Schneider-Mizell

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2017, Gerhard et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,481
    views
  • 499
    downloads
  • 97
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Stephan Gerhard
  2. Ingrid Andrade
  3. Richard D Fetter
  4. Albert Cardona
  5. Casey M Schneider-Mizell
(2017)
Conserved neural circuit structure across Drosophila larva development revealed by comparative connectomics
eLife 6:e29089.
https://doi.org/10.7554/eLife.29089

Share this article

https://doi.org/10.7554/eLife.29089

Further reading

    1. Computational and Systems Biology
    2. Neuroscience
    Brian DePasquale, Carlos D Brody, Jonathan W Pillow
    Research Article Updated

    Accumulating evidence to make decisions is a core cognitive function. Previous studies have tended to estimate accumulation using either neural or behavioral data alone. Here, we develop a unified framework for modeling stimulus-driven behavior and multi-neuron activity simultaneously. We applied our method to choices and neural recordings from three rat brain regions—the posterior parietal cortex (PPC), the frontal orienting fields (FOF), and the anterior-dorsal striatum (ADS)—while subjects performed a pulse-based accumulation task. Each region was best described by a distinct accumulation model, which all differed from the model that best described the animal’s choices. FOF activity was consistent with an accumulator where early evidence was favored while the ADS reflected near perfect accumulation. Neural responses within an accumulation framework unveiled a distinct association between each brain region and choice. Choices were better predicted from all regions using a comprehensive, accumulation-based framework and different brain regions were found to differentially reflect choice-related accumulation signals: FOF and ADS both reflected choice but ADS showed more instances of decision vacillation. Previous studies relating neural data to behaviorally inferred accumulation dynamics have implicitly assumed that individual brain regions reflect the whole-animal level accumulator. Our results suggest that different brain regions represent accumulated evidence in dramatically different ways and that accumulation at the whole-animal level may be constructed from a variety of neural-level accumulators.

    1. Neuroscience
    Kayson Fakhar, Fatemeh Hadaeghi ... Claus C Hilgetag
    Research Article

    Efficient communication in brain networks is foundational for cognitive function and behavior. However, how communication efficiency is defined depends on the assumed model of signaling dynamics, e.g., shortest path signaling, random walker navigation, broadcasting, and diffusive processes. Thus, a general and model-agnostic framework for characterizing optimal neural communication is needed. We address this challenge by assigning communication efficiency through a virtual multi-site lesioning regime combined with game theory, applied to large-scale models of human brain dynamics. Our framework quantifies the exact influence each node exerts over every other, generating optimal influence maps given the underlying model of neural dynamics. These descriptions reveal how communication patterns unfold if regions are set to maximize their influence over one another. Comparing these maps with a variety of brain communication models showed that optimal communication closely resembles a broadcasting regime in which regions leverage multiple parallel channels for information dissemination. Moreover, we found that the brain’s most influential regions are its rich-club, exploiting their topological vantage point by broadcasting across numerous pathways that enhance their reach even if the underlying connections are weak. Altogether, our work provides a rigorous and versatile framework for characterizing optimal brain communication, and uncovers the most influential brain regions, and the topological features underlying their influence.