A minimally sufficient model for rib proximal-distal patterning based on genetic analysis and agent-based simulations

  1. Jennifer L Fogel
  2. Daniel L Lakeland
  3. In Kyoung Mah
  4. Francesca V Mariani  Is a corresponding author
  1. University of Southern California, United States
  2. Lakeland Applied Sciences LLC, United States

Abstract

For decades, the mechanism of skeletal patterning along a proximal-distal axis has been an area of intense inquiry. Here we examine the development of the ribs, simple structures that in most terrestrial vertebrates consist of two skeletal elements- a proximal bone and a distal cartilage portion. While the ribs have been shown to arise from the somites, little is known about how the two segments are specified. During our examination of genetically modified mice, we discovered a series of progressively worsening phenotypes that could not be easily explained. Here, we combine genetic analysis of rib development with agent-based simulations to conclude that proximal-distal patterning and outgrowth could occur based on simple rules. In our model, specification occurs during somite stages due to varying Hedgehog protein levels, while later expansion refines the pattern. This framework is broadly applicable for understanding the mechanisms of skeletal patterning along a proximal-distal axis.

Article and author information

Author details

  1. Jennifer L Fogel

    Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, University of Southern California, Los Angeles, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Daniel L Lakeland

    Lakeland Applied Sciences LLC, Altadena, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. In Kyoung Mah

    Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, University of Southern California, Los Angeles, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Francesca V Mariani

    Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, University of Southern California, Los Angeles, United States
    For correspondence
    fmariani@usc.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-1619-8763

Funding

California Institute for Regenerative Medicine (Postdoctoral Fellowship)

  • Jennifer L Fogel

University of Southern California

  • Jennifer L Fogel
  • Daniel L Lakeland
  • In Kyoung Mah
  • Francesca V Mariani

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: This study was performed in strict accordance with the recommendations in the Guide for the Care and Use of Laboratory Animals of the National Institutes of Health. All of the animals were handled according to approved institutional animal care and use committee (IACUC) protocols (#11152) of the University of Southern California.

Reviewing Editor

  1. Lee Niswander, University of Colorado Anschutz Medical Campus, United States

Publication history

  1. Received: June 5, 2017
  2. Accepted: October 24, 2017
  3. Accepted Manuscript published: October 25, 2017 (version 1)
  4. Version of Record published: November 17, 2017 (version 2)

Copyright

© 2017, Fogel et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,096
    Page views
  • 146
    Downloads
  • 5
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Jennifer L Fogel
  2. Daniel L Lakeland
  3. In Kyoung Mah
  4. Francesca V Mariani
(2017)
A minimally sufficient model for rib proximal-distal patterning based on genetic analysis and agent-based simulations
eLife 6:e29144.
https://doi.org/10.7554/eLife.29144

Further reading

    1. Developmental Biology
    2. Evolutionary Biology
    Joaquín Letelier, Lorena Buono ... Juan R Martínez-Morales
    Research Article

    Genetic studies in human and mice have established a dual role for Vsx genes in retina development: an early function in progenitors’ specification, and a later requirement for bipolar-cells fate determination. Despite their conserved expression patterns, it is currently unclear to which extent Vsx functions are also conserved across vertebrates, as mutant models are available only in mammals. To gain insight into vsx function in teleosts, we have generated vsx1 and vsx2 CRISPR/Cas9 double knockouts (vsxKO) in zebrafish. Our electrophysiological and histological analyses indicate severe visual impairment and bipolar cells depletion in vsxKO larvae, with retinal precursors being rerouted toward photoreceptor or Müller glia fates. Surprisingly, neural retina is properly specified and maintained in mutant embryos, which do not display microphthalmia. We show that although important cis-regulatory remodelling occurs in vsxKO retinas during early specification, this has little impact at a transcriptomic level. Our observations point to genetic redundancy as an important mechanism sustaining the integrity of the retinal specification network, and to Vsx genes regulatory weight varying substantially among vertebrate species.

    1. Developmental Biology
    Yue Rong Tan, Megan Liaw, Chen-Hui Chen
    Insight

    Single-cell transcriptome analysis of zebrafish cells clarifies the signalling pathways controlling skin formation and reveals that some cells produce proteins required for human teeth to acquire their enamel.