A minimally sufficient model for rib proximal-distal patterning based on genetic analysis and agent-based simulations

  1. Jennifer L Fogel
  2. Daniel L Lakeland
  3. In Kyoung Mah
  4. Francesca V Mariani  Is a corresponding author
  1. University of Southern California, United States
  2. Lakeland Applied Sciences LLC, United States

Abstract

For decades, the mechanism of skeletal patterning along a proximal-distal axis has been an area of intense inquiry. Here we examine the development of the ribs, simple structures that in most terrestrial vertebrates consist of two skeletal elements- a proximal bone and a distal cartilage portion. While the ribs have been shown to arise from the somites, little is known about how the two segments are specified. During our examination of genetically modified mice, we discovered a series of progressively worsening phenotypes that could not be easily explained. Here, we combine genetic analysis of rib development with agent-based simulations to conclude that proximal-distal patterning and outgrowth could occur based on simple rules. In our model, specification occurs during somite stages due to varying Hedgehog protein levels, while later expansion refines the pattern. This framework is broadly applicable for understanding the mechanisms of skeletal patterning along a proximal-distal axis.

Article and author information

Author details

  1. Jennifer L Fogel

    Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, University of Southern California, Los Angeles, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Daniel L Lakeland

    Lakeland Applied Sciences LLC, Altadena, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. In Kyoung Mah

    Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, University of Southern California, Los Angeles, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Francesca V Mariani

    Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, University of Southern California, Los Angeles, United States
    For correspondence
    fmariani@usc.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-1619-8763

Funding

California Institute for Regenerative Medicine (Postdoctoral Fellowship)

  • Jennifer L Fogel

University of Southern California

  • Jennifer L Fogel
  • Daniel L Lakeland
  • In Kyoung Mah
  • Francesca V Mariani

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Lee Niswander, University of Colorado Anschutz Medical Campus, United States

Ethics

Animal experimentation: This study was performed in strict accordance with the recommendations in the Guide for the Care and Use of Laboratory Animals of the National Institutes of Health. All of the animals were handled according to approved institutional animal care and use committee (IACUC) protocols (#11152) of the University of Southern California.

Version history

  1. Received: June 5, 2017
  2. Accepted: October 24, 2017
  3. Accepted Manuscript published: October 25, 2017 (version 1)
  4. Version of Record published: November 17, 2017 (version 2)

Copyright

© 2017, Fogel et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,188
    views
  • 152
    downloads
  • 9
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Jennifer L Fogel
  2. Daniel L Lakeland
  3. In Kyoung Mah
  4. Francesca V Mariani
(2017)
A minimally sufficient model for rib proximal-distal patterning based on genetic analysis and agent-based simulations
eLife 6:e29144.
https://doi.org/10.7554/eLife.29144

Share this article

https://doi.org/10.7554/eLife.29144

Further reading

    1. Developmental Biology
    2. Neuroscience
    Amy R Poe, Lucy Zhu ... Matthew S Kayser
    Research Article

    Sleep and feeding patterns lack strong daily rhythms during early life. As diurnal animals mature, feeding is consolidated to the day and sleep to the night. In Drosophila, circadian sleep patterns are initiated with formation of a circuit connecting the central clock to arousal output neurons; emergence of circadian sleep also enables long-term memory (LTM). However, the cues that trigger the development of this clock-arousal circuit are unknown. Here, we identify a role for nutritional status in driving sleep-wake rhythm development in Drosophila larvae. We find that in the 2nd instar larval period (L2), sleep and feeding are spread across the day; these behaviors become organized into daily patterns by the 3rd instar larval stage (L3). Forcing mature (L3) animals to adopt immature (L2) feeding strategies disrupts sleep-wake rhythms and the ability to exhibit LTM. In addition, the development of the clock (DN1a)-arousal (Dh44) circuit itself is influenced by the larval nutritional environment. Finally, we demonstrate that larval arousal Dh44 neurons act through glucose metabolic genes to drive onset of daily sleep-wake rhythms. Together, our data suggest that changes to energetic demands in developing organisms trigger the formation of sleep-circadian circuits and behaviors.

    1. Cell Biology
    2. Developmental Biology
    Filip Knop, Apolena Zounarova ... Marie Macůrková
    Research Article

    During Caenorhabditis elegans development, multiple cells migrate long distances or extend processes to reach their final position and/or attain proper shape. The Wnt signalling pathway stands out as one of the major coordinators of cell migration or cell outgrowth along the anterior-posterior body axis. The outcome of Wnt signalling is fine-tuned by various mechanisms including endocytosis. In this study, we show that SEL-5, the C. elegans orthologue of mammalian AP2-associated kinase AAK1, acts together with the retromer complex as a positive regulator of EGL-20/Wnt signalling during the migration of QL neuroblast daughter cells. At the same time, SEL-5 in cooperation with the retromer complex is also required during excretory canal cell outgrowth. Importantly, SEL-5 kinase activity is not required for its role in neuronal migration or excretory cell outgrowth, and neither of these processes is dependent on DPY-23/AP2M1 phosphorylation. We further establish that the Wnt proteins CWN-1 and CWN-2 together with the Frizzled receptor CFZ-2 positively regulate excretory cell outgrowth, while LIN-44/Wnt and LIN-17/Frizzled together generate a stop signal inhibiting its extension.