Ubiquitin turnover and endocytic trafficking in yeast are regulated by Ser57 phosphorylation of ubiquitin

Abstract

Despite its central role in protein degradation little is known about the molecular mechanisms that sense, maintain, and regulate steady state concentration of ubiquitin in the cell. Here, we describe a novel mechanism for regulation of ubiquitin homeostasis that is mediated by phosphorylation of ubiquitin at the Ser57 position. We find that loss of Ppz phosphatase activity leads to defects in ubiquitin homeostasis that are at least partially attributable to elevated levels of Ser57 phosphorylated ubiquitin. Phosphomimetic mutation at the Ser57 position of ubiquitin conferred increased rates of endocytic trafficking and ubiquitin turnover. These phenotypes are associated with bypass of recognition by endosome-localized deubiquitylases - including Doa4 which is critical for regulation of ubiquitin recycling. Thus, ubiquitin homeostasis is significantly impacted by the rate of ubiquitin flux through the endocytic pathway and by signaling pathways that converge on ubiquitin itself to determine whether it is recycled or degraded in the vacuole.

Article and author information

Author details

  1. Sora Lee

    Department of Cell and Developmental Biology, Vanderbilt University, Nashville, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Jessica M Tumolo

    Department of Cell and Developmental Biology, Vanderbilt University, Nashville, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Aaron C Ehlinger

    Department of Biochemistry, Vanderbilt University, Nashville, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Kristin K Jernigan

    Department of Cell and Developmental Biology, Vanderbilt University, Nashville, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Susan J Qualls-Histed

    Department of Cell and Developmental Biology, Vanderbilt University, Nashville, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Pi-Chiang Hsu

    Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. W Hayes McDonald

    Department of Biochemistry, Vanderbilt University, Nashville, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Walter J Chazin

    Department of Biochemistry, Vanderbilt University, Nashville, United States
    Competing interests
    The authors declare that no competing interests exist.
  9. Jason A MacGurn

    Department of Cell and Developmental Biology, Vanderbilt University, Nashville, United States
    For correspondence
    jason.a.macgurn@vanderbilt.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-5063-259X

Funding

National Institute of General Medical Sciences (R00 GM101077)

  • Jason A MacGurn

National Institute of General Medical Sciences (R01 GM118491)

  • Jason A MacGurn

American Federation for Aging Research (Research Grants for Junior Faculty)

  • Jason A MacGurn

National Institute of General Medical Sciences (R35 GM118089)

  • Walter J Chazin

National Heart, Lung, and Blood Institute (T32 HL069765)

  • Sora Lee

National Cancer Institute (T32 CA119925)

  • Jessica M Tumolo

National Cancer Institute (T32 CA009582)

  • Aaron C Ehlinger

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2017, Lee et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,248
    views
  • 577
    downloads
  • 30
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

Share this article

https://doi.org/10.7554/eLife.29176

Further reading

    1. Cell Biology
    2. Evolutionary Biology
    Paul Richard J Yulo, Nicolas Desprat ... Heather L Hendrickson
    Research Article

    Maintenance of rod-shape in bacterial cells depends on the actin-like protein MreB. Deletion of mreB from Pseudomonas fluorescens SBW25 results in viable spherical cells of variable volume and reduced fitness. Using a combination of time-resolved microscopy and biochemical assay of peptidoglycan synthesis, we show that reduced fitness is a consequence of perturbed cell size homeostasis that arises primarily from differential growth of daughter cells. A 1000-generation selection experiment resulted in rapid restoration of fitness with derived cells retaining spherical shape. Mutations in the peptidoglycan synthesis protein Pbp1A were identified as the main route for evolutionary rescue with genetic reconstructions demonstrating causality. Compensatory pbp1A mutations that targeted transpeptidase activity enhanced homogeneity of cell wall synthesis on lateral surfaces and restored cell size homeostasis. Mechanistic explanations require enhanced understanding of why deletion of mreB causes heterogeneity in cell wall synthesis. We conclude by presenting two testable hypotheses, one of which posits that heterogeneity stems from non-functional cell wall synthesis machinery, while the second posits that the machinery is functional, albeit stalled. Overall, our data provide support for the second hypothesis and draw attention to the importance of balance between transpeptidase and glycosyltransferase functions of peptidoglycan building enzymes for cell shape determination.

    1. Cell Biology
    2. Developmental Biology
    Pavan K Nayak, Arul Subramanian, Thomas F Schilling
    Research Article

    Mechanical forces play a critical role in tendon development and function, influencing cell behavior through mechanotransduction signaling pathways and subsequent extracellular matrix (ECM) remodeling. Here we investigate the molecular mechanisms by which tenocytes in developing zebrafish embryos respond to muscle contraction forces during the onset of swimming and cranial muscle activity. Using genome-wide bulk RNA sequencing of FAC-sorted tenocytes we identify novel tenocyte markers and genes involved in tendon mechanotransduction. Embryonic tendons show dramatic changes in expression of matrix remodeling associated 5b (mxra5b), matrilin1 (matn1), and the transcription factor kruppel-like factor 2a (klf2a), as muscles start to contract. Using embryos paralyzed either by loss of muscle contractility or neuromuscular stimulation we confirm that muscle contractile forces influence the spatial and temporal expression patterns of all three genes. Quantification of these gene expression changes across tenocytes at multiple tendon entheses and myotendinous junctions reveals that their responses depend on force intensity, duration and tissue stiffness. These force-dependent feedback mechanisms in tendons, particularly in the ECM, have important implications for improved treatments of tendon injuries and atrophy.