Live-cell mapping of organelle-associated RNAs via proximity biotinylation combined with protein-RNA crosslinking

  1. Pornchai Kaewsapsak
  2. David Michael Shechner
  3. William Mallard
  4. John L Rinn
  5. Alice Y Ting  Is a corresponding author
  1. Massachusetts Institute of Technology, United States
  2. Stanford University, United States
  3. Harvard University, United States
  4. Broad Institute of Massachusetts Institute of Technology and Harvard, United States
6 figures, 1 table and 6 additional files

Figures

Figure 1 with 2 supplements
APEX-RIP in mitochondria.

(A) Overview of the APEX-RIP workflow. Live cells expressing APEX2 (grey ‘pacmen’) targeted to the compartment of interest (here, the mitochondrial matrix) are incubated with the APEX substrate …

https://doi.org/10.7554/eLife.29224.002
Figure 1—figure supplement 1
Optimization of APEX-RIP protocol.

(A) Top: Alternative labeling and crosslinking protocols. In protocol I., cells are crosslinked with formaldehyde (FA) and quenched with Glycine (Gly) prior to the introduction of biotin-phenol (BP) …

https://doi.org/10.7554/eLife.29224.003
Figure 1—figure supplement 2
Reproducibility of the mito-APEX2 RIP experiment.

Pairwise correlations between global RNA abundances (FPKM) in biological replicates (A) prior to enrichment, and (B) following mito-APEX2-RIP.

https://doi.org/10.7554/eLife.29224.004
Figure 2 with 3 supplements
APEX-RIP mapping of the nuclear-cytoplasmic RNA distribution.

(A) Fluorescence imaging of nuclear and cytosol-targeted APEX2 fusion constructs. HEK 293T cells expressing the indicated constructs (‘NLS,’ nuclear localization signal; ‘NES,’ nuclear export …

https://doi.org/10.7554/eLife.29224.005
Figure 2—figure supplement 1
Characterization of APEX2 fusion constructs.

HEK 293 T cells stably expressing the indicated constructs (right) were labeled and crosslinked via Protocol II (Figure 1—figure supplement 1A). Cell lysates were analyzed by SDS-PAGE, blotting with …

https://doi.org/10.7554/eLife.29224.006
Figure 2—figure supplement 2
Reproducibility of nuclear–cytoplasmic APEX-RIP experiments.

Pairwise correlations between global RNA abundances (FPKM) in biological replicates of the APEX2–NLS-RIP experiment, (A) prior to, and (B), following enrichment, and similarly, of the APEX2–NES-RIP …

https://doi.org/10.7554/eLife.29224.007
Figure 2—figure supplement 3
Precision and specificity of nuclear–cytoplasmic APEX-RIP, and its comparison to subcellular fractionation.

(A–B) Determination of cutoffs for APEX-RIP data by ROC analysis (see Materials and methods). (C) APEX protein localization isn’t perturbed during the APEX-RIP labeling and crosslinking protocol. …

https://doi.org/10.7554/eLife.29224.008
Figure 3 with 2 supplements
APEX-RIP at the Endoplasmic Reticulum membrane.

(AB) Schematics summarizing alternating ER-targeting strategies. (A) HRP, targeted to the ER lumen with a KDEL sequence, biotinylates proteins within the ER. Red B: biotin. Red X’s: chemical …

https://doi.org/10.7554/eLife.29224.009
Figure 3—figure supplement 1
Further optimization of the APEX-RIP protocol; additional HRP-KDEL RIP data.

(A) Addition of a radical quenching step between APEX2 labeling and formaldehyde crosslinking improves APEX-RIP specificity. Top: schematic of the revised labeling–crosslinking workflow. The radical …

https://doi.org/10.7554/eLife.29224.010
Figure 3—figure supplement 2
Additional analysis comparing HRP-KDEL RIP data and other ER-RNA data sets.

(A) Gene ontology (GO) analysis of mRNAs that were enriched in ER datasets, but which lack secretory annotation. The number of RNA species in each class is indicated to the right of the …

https://doi.org/10.7554/eLife.29224.011
Mapping the ER-proximal transcriptome with APEX–RIP.

(A) Global analysis of RNA localization at the Endoplasmic Reticulum. Fold change = (FPKMpost-enrichment/FPKMpre-enrichment). Horizontal dashed line indicates p-value = 0.05. Top histogram …

https://doi.org/10.7554/eLife.29224.012
APEX-RIP reveals RNAs with potentially novel localization.

(A) Many mitochondrial transmembrane proteins appear to be translated at the ER. mRNAs encoding mitochondrial proteins (defined by GOCC and MitoCarta 1.0 (Ashburner et al., 2000; Pagliarini et al., …

https://doi.org/10.7554/eLife.29224.013
Author response image 1
Fractionation-Seq and APEX-RIP recover similar populations of intronic sequences from each compartment.

A. Both methods quantify the nuclear enrichment and cytosolic de-enrichment of intronic reads (GENCODE hg19) to similar extents. We ascribe the greater number of intronic reads in the APEX …

https://doi.org/10.7554/eLife.29224.021

Tables

Key resources table
Reagent type (species)
or resource
DesignationSource or referenceIdentifiersAdditional information
cell line (human)HEK293TATCCCRL3216; RRID: CVCL_0063
cell line (human)mito-APEX2 (HEK293T)this papermito-BamHI-V5-APEX2
CMV promoter
Mito is a 24-amino acidmitochondrial targeting sequence (MTS) derived from COX4. V5: GKPIPNPLLGLDST
cell line (human)APEX2-NLS (HEK293T)this paperNotI-V5-APEX2-EcoRI-3xNLS-NheI
CMV promoter
NLS: DPKKKRKV
cell line (human)APEX2-NES (HEK293T)PMID: 28441135BstBI-FLAG-APEX2-NES-NheI
CMV promoter
NES: LQLPPLERLTLD
cell line (human)ERM-APEX2 (HEK293T)PMID: 28441135BstBI-ERM-APEX2-V5-NheI
CMV promoter
ERM is ER membrane targeting sequence derived from N-terminal 27 amino acids of rabbit P450 C1 (MDPVVVLGLCLSCLLLLSLWKQSYGGG)
cell line (human)HRP-KDEL (HEK293T)this paperNotI-IgK-HRP-V5-KDEL-IRES-puromycin-XbaI
CMV promoter
IgK is N-terminal signaling sequence that brings protein to ER (METDTLLLWVLLLWVPGSTGD). KDEL is ER-retaining sequence
antibodyAnti V5Life TechnologiesR960-25; RRID: AB_2556564Dilution 1:1000
antibodyAnti FLAGAgilent200472Dilution 1:500
antibodyAnti TOM20Santa Cruz Biotechnologysc-11415; RRID: AB_2207533Dilution 1:400
antibodyAnti RCN2Proteintech10193–2-AP; RRID: AB_2180018Dilution 1:200
antibodyAnti Mouse-AlexaFlour488Life TechnologiesA-11029; RRID: AB_2534088Dilution 1:1000
antibodyAnti Mouse-AlexaFlour568Life TechnologiesA-11031; RRID: AB_144696Dilution 1:1000
antibodyStreptavidin-HRPThermoFisherS-911Dilution 1:1000
recombinant DNA reagentMito-APEX
(plasmid)
PMID: 23371551pCDNA vector
recombinant DNA reagentmito-APEX2 (plasmid)this paperpLX304 vectormito-BamHI-V5-APEX2
CMV promoter
Mito is a 24-amino acidmitochondrial targeting sequence (MTS) derived from COX4. V5: GKPIPNPLLGLDST
recombinant DNA reagentAPEX2-NLS (plasmid)this paperNotI-V5-APEX2-EcoRI-3xNLS-NheI
CMV promoter
NLS: DPKKKRKV
recombinant DNA reagentHRP-KDEL
(plasmid)
this paperNotI-IgK-HRP-V5-KDEL-IRES-puromycin-XbaI
CMV promoter
IgK is N-terminal signaling sequence that brings protein to ER (METDTLLLWVLLLWVPGSTGD). KDEL is ER-retaining sequence
sequence-based reagentRibo-Zero Gold rRNA removal kit (Illumina)IlliuminaMRZG12324
sequence-based reagentTruseq RNA sample preparation kit V2IlliuminaRS-122–2001
sequence-based reagentMT-ND1 forwardthis paperCACCTCTAGCCTAGCCGTTT
sequence-based reagentMT-ND1 reversethis paperCCGATCAGGGCGTAGTTTGA
sequence-based reagentMT-ND2 forwardthis paperCTTAAACTCCAGCACCACGAC
sequence-based reagentMT-ND2 reversethis paperAGCTTGTTTCAGGTGCGAGA
sequence-based reagentMT-ND3 forwardthis paperCCGCGTCCCTTTCTCCATAA
sequence-based reagentMT-ND3 reversethis paperAGGGCTCATGGTAGGGGTAA
sequence-based reagentMT-ND4 forwardthis paperACAACACAATGGGGCTCACT
sequence-based reagentMT-ND4 reversethis paperCCGGTAATGATGTCGGGGTT
sequence-based reagentMT-ND4L forwardthis paperTCGCTCACACCTCATATCCTC
sequence-based reagentMT-ND4L reversethis paperAGGCGGCAAAGACTAGTATGG
sequence-based reagentMT-ND5 forwardthis paperTCCATTGTCGCATCCACCTT
sequence-based reagentMT-ND5 reversethis paperGGTTGTTTGGGTTGTGGCTC
sequence-based reagentMT-ND6 forwardthis paperGGGTTGAGGTCTTGGTGAGT
sequence-based reagentMT-ND6 reversethis paperACCAATCCTACCTCCATCGC
sequence-based reagentMT-CYTB forwardthis paperTCTTGCACGAAACGGGATCA
sequence-based reagentMT-CYTB reversethis paperCGAGGGCGTCTTTGATTGTG
sequence-based reagentMT-COX1 forwardthis paperTCCTTATTCGAGCCGAGCTG
sequence-based reagentMT-COX1 reversethis paperACAAATGCATGGGCTGTGAC
sequence-based reagentMT-COX2 forwardthis paperAACCAAACCACTTTCACCGC
sequence-based reagentMT-COX2 reversethis paperCGATGGGCATGAAACTGTGG
sequence-based reagentMT-COX3 forwardthis paperCTAATGACCTCCGGCCTAGC
sequence-based reagentMT-COX3 reversethis paperAGGCCTAGTATGAGGAGCGT
sequence-based reagentMT-ATP6 forwardthis paperTTCGCTTCATTCATTGCCCC
sequence-based reagentMT-ATP6 reversethis paperGGGTGGTGATTAGTCGGTTGT
sequence-based reagentMT-ATP8 forwardthis paperACTACCACCTACCTCCCTCAC
sequence-based reagentMT-ATP8 reversethis paperGGCAATGAATGAAGCGAACAGA
sequence-based reagentMT-RNR1 forwardthis paperCATCCCCGTTCCAGTGAGTT
sequence-based reagentMT-RNR1 reversethis paperTGGCTAGGCTAAGCGTTTTGA
sequence-based reagentMT-RNR2 forwardthis paperCAGCCGCTATTAAAGGTTCGT
sequence-based reagentMT-RNR2 reversethis paperAAGGCGCTTTGTGAAGTAGG
sequence-based reagentGAPDH forwardthis paperTTCGACAGTCAGCCGCATCTTCTT
sequence-based reagentGAPDH reversethis paperGCCCAATACGACCAAATCCGTTGA
sequence-based reagentXIST forwardthis paperCCCTACTAGCTCCTCGGACA
sequence-based reagentXIST reversethis paperACACATGCAGCGTGGTATCT
sequence-based reagentEMC10 forwardthis paperTTCATTGAGCGCCTGGAGAT
sequence-based reagentEMC10 reversethis paperTTCATTGAGCGCCTGGAGAT
sequence-based reagentPCSK1N forwardthis paperGAGACACCCGACGTGGAC
sequence-based reagentPCSK1N reversethis paperAATCCGTCCCAGCAAGTACC
sequence-based reagentSSR2 forwardthis paperGTTTGGGATGCCAACGATGAG
sequence-based reagentSSR2 reversethis paperCTCCACGGCGTATCTGTTCA
sequence-based reagentTMX1 forwardthis paperACGGACGAGAACTGGAGAGA
sequence-based reagentTMX1 reversethis paperATTTTGACAAGCAGGGCACC
sequence-based reagentSFT2D2 forwardthis paperCCATCTTCCTCATGGGACCAG
sequence-based reagentSFT2D2 reversethis paperGCAGAACACAGGGTAAGTGC
sequence-based reagentEPT1 forwardthis paperTGGCTTTCTGCTGGTCGTAT
sequence-based reagentEPT1 reversethis paperAATCCAAACCCAGTCAGGCA
sequence-based reagentDRAP1 forwardthis paperACATCCCACCTGAAGCAGTG
sequence-based reagentDRAP1 reversethis paperGATGCCACCAGGTCCTTCAA
sequence-based reagentFAU forwardthis paperTCCTAAGGTGGCCAAACAGG
sequence-based reagentFAU reversethis paperGTGGGCACAACGTTGACAAA
sequence-based reagentSUB1 forwardthis paperCGTCACTTCCGGTTCTCTGT
sequence-based reagentSUB1 reversethis paperTGATTTAGGCATCGCTTCGC
sequence-based reagentLSM6 forwardthis paperCGGACGACCAGTTGTGGTAA
sequence-based reagentLSM6 reversethis paperCCAGGACCCCTCGATAATCC
sequence-based reagentCOPS2 forwardthis paperAGGAGGACTACGACCTGGAAT
sequence-based reagentCOPS2 reversethis paperGCCGCTTTTGGGTCATCTTC
sequence-based reagentCGGBP1 forwardthis paperGCCTCGTCCACTTTCCCTAA
sequence-based reagentCGGBP1 reversethis paperTCATGCCTTTACGTAGGATCGAG
sequence-based reagentBCA53 forwardthis paperTCTTGCCTGCTCCACAGTTT
sequence-based reagentBCA53 reversethis paperCAAACACCAAGGAGGGGTCT
sequence-based reagentCEP128 forwardthis paperTACAGTAATGGACAGGCGGG
sequence-based reagentCEP128 reversethis paperTCCGGAGTTGGTCGATTGAT
sequence-based reagentMAD1L1 forwardthis paperCGAGTCTGCCATCGTCCAA
sequence-based reagentMAD1L1 reversethis paperGCACTCTCCACCTGCTTCTT
sequence-based reagentRAD51B forwardthis paperTTTGGACGAAGCCCTGCAT
sequence-based reagentRAD51B reversethis paperCACAACCTGGTGGACCTGTA
sequence-based reagentRBPMS forwardthis paperACAGTCGCTCAGAAGCAGAG
sequence-based reagentRBPMS reversethis paperCGAAGCGGATGCCATTCAAA
sequence-based reagentTCF7 forwardthis paperTCAACAGCCCACATCCCAC
sequence-based reagentTCF7 reversethis paperAGAGGCCTGTGAACTTGCTT
sequence-based reagentHOOK2 forwardthis paperTTTGCTGAAAAGGAAGCTGGA
sequence-based reagentHOOK2 reversethis paperGCAACTCCAGATCTGCCTCA
sequence-based reagentMAN2C1 forwardthis paperATGAGGCCCACAAGTTCCTG
sequence-based reagentMAN2C1 reversethis paperTCTCATAGGTGGCCTGGGAA
peptide, recombinant protein
commercial assay or kit
chemical compound, drugBiotin-phenol (BP)PMID: 23371551
software, algorithmTophat v2.1.1DOI: 10.1186/gb-2013-14-4-r36RRID:SCR_013035
software, algorithmCuffDiff2RRID:SCR_001647
software, algorithmSlidebook 6.0RRID:SCR_014300
software, algorithmDAVID bioinformatics analysisRRID:SCR_003033
other

Additional files

Supplementary file 1

Mitochondrial APEX-RIP Data.

(A) RNAs enriched by mito-APEX2-RIP. (B) Unfiltered mito-APEX-RIP RNA-Seq data. (C) Column definitions.

https://doi.org/10.7554/eLife.29224.014
Supplementary file 2

Nuclear and Cytosolic APEX-RIP Data.

(A) APEX2-RIP-enriched nuclear RNAs. (B) APEX2-RIP-enriched cytosolic RNAs. (C) Unfiltered APEX-RIP RNA-Seq data. (D) Unfiltered nuclear and cytosolic fractionation-seq data (Sultan et al., 2014). (E) Fractionation-Seq-enriched Nuclear RNAs. (F) Fractionation-Seq-enriched cytosolic RNAs. (G) lncRNAs used to determine coverage analysis (Figure 2F). (H) Column definitions.

https://doi.org/10.7554/eLife.29224.015
Supplementary file 3

KDEL-RIP Data (ER-proximal RNAs).

(A) KDEL-RIP-enriched ER-proximal RNAs. (B) Unfiltered KDEL-RIP RNA-Seq data. (C) ER-associated RNAs enriched by Fractionation-Seq (Reid and Nicchitta, 2012). (D) ER-associated RNAs enriched by proximity-dependent ribosome profiling (Jan et al., 2014). (E) True positive list: RNAs encoding established ER-resident proteins. (F) Column definitions.

https://doi.org/10.7554/eLife.29224.016
Supplementary file 4

Additional analysis of ER and nuclear datasets.

(A) Mitochondrial mRNAs (nuclear-encoded) enriched at the ER membrane. (B) RNAs that may be enriched at the nuclear lamina. (C) Column definitions.

https://doi.org/10.7554/eLife.29224.017
Supplementary file 5

Materials used in this study.

(A) Genetic constructs used in this study. (B) Antibodies used for immunofluorescence. RRID: Research Resource Identifier (https://scicrunch.org/resources). (C) qRT-PCR primers used in this study. (D) Column definitions.

https://doi.org/10.7554/eLife.29224.018
Transparent reporting form
https://doi.org/10.7554/eLife.29224.019

Download links