Multiple conserved cell adhesion protein interactions mediate neural wiring of a sensory circuit in C. elegans
Abstract
Nervous system function relies on precise synaptic connections. A number of widely-conserved cell adhesion proteins are implicated in cell recognition between synaptic partners, but how these proteins act as a group to specify a complex neural network is poorly understood. Taking advantage of known connectivity in C. elegans, we identified and studied cell adhesion genes expressed in three interacting neurons in the mating circuits of the adult male. Two interacting pairs of cell surface proteins independently promote fasciculation between sensory neuron HOA and its postsynaptic target interneuron AVG: BAM-2/neurexin-related in HOA binds to CASY-1/calsyntenin in AVG; SAX-7/L1CAM in sensory neuron PHC binds to RIG-6/contactin in AVG. A third, basal pathway results in considerable HOA-AVG fasciculation and synapse formation in the absence of the other two. The features of this multiplexed mechanism help to explain how complex connectivity is encoded and robustly established during nervous system development.
Article and author information
Author details
Funding
National Institutes of Health (R01 GM066897 and R01 MH112689)
- Scott W Emmons
G Harold and Leila Y. Mathers Foundation
- Scott W Emmons
The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.
Copyright
© 2017, Kim & Emmons
This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.
Metrics
-
- 2,282
- views
-
- 358
- downloads
-
- 36
- citations
Views, downloads and citations are aggregated across all versions of this paper published by eLife.
Download links
Downloads (link to download the article as PDF)
Open citations (links to open the citations from this article in various online reference manager services)
Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)
Further reading
-
- Neuroscience
Studying and understanding the code of large neural populations hinge on accurate statistical models of population activity. A novel class of models, based on learning to weigh sparse nonlinear Random Projections (RP) of the population, has demonstrated high accuracy, efficiency, and scalability. Importantly, these RP models have a clear and biologically plausible implementation as shallow neural networks. We present a new class of RP models that are learned by optimizing the randomly selected sparse projections themselves. This ‘reshaping’ of projections is akin to changing synaptic connections in just one layer of the corresponding neural circuit model. We show that Reshaped RP models are more accurate and efficient than the standard RP models in recapitulating the code of tens of cortical neurons from behaving monkeys. Incorporating more biological features and utilizing synaptic normalization in the learning process, results in accurate models that are more efficient. Remarkably, these models exhibit homeostasis in firing rates and total synaptic weights of projection neurons. We further show that these sparse homeostatic reshaped RP models outperform fully connected neural network models. Thus, our new scalable, efficient, and highly accurate population code models are not only biologically plausible but are actually optimized due to their biological features. These findings suggest a dual functional role of synaptic normalization in neural circuits: maintaining spiking and synaptic homeostasis while concurrently optimizing network performance and efficiency in encoding information and learning.
-
- Neuroscience
Structural hemispheric asymmetry has long been assumed to guide functional lateralization of the human brain, but empirical evidence for this compelling hypothesis remains scarce. Recently, it has been suggested that microstructural asymmetries may be more relevant to functional lateralization than macrostructural asymmetries. To investigate the link between microstructure and function, we analyzed multimodal MRI data in 907 right-handed participants. We quantified structural asymmetry and functional lateralization of the planum temporale (PT), a cortical area crucial for auditory-language processing. We found associations between PT functional lateralization and several structural asymmetries, such as surface area, intracortical myelin content, neurite density, and neurite orientation dispersion. The PT structure also showed hemispheric-specific coupling with its functional activity. All these functional-structural associations are highly specific to within-PT functional activity during auditory-language processing. These results suggest that structural asymmetry underlies functional lateralization of the same brain area and highlights a critical role of microstructural PT asymmetries in auditory-language processing.