The synaptic ribbon is critical for sound encoding at high rates and with temporal precision

  1. Philippe Jean
  2. David Lopez de la Morena
  3. Susann Michanski
  4. Lina María Jaime Tobón
  5. Rituparna Chakrabarti
  6. Maria Magdalena Picher
  7. Jakob Neef
  8. SangYong Jung
  9. Mehmet Gültas
  10. Stephan Maxeiner
  11. Andreas Neef  Is a corresponding author
  12. Carolin Wichmann  Is a corresponding author
  13. Nicola Strenzke  Is a corresponding author
  14. Chad Grabner  Is a corresponding author
  15. Tobias Moser  Is a corresponding author
  1. University Medical Center Göttingen, Germany
  2. University of Göttingen, Germany
  3. Georg-August-University Göttingen, Germany
  4. University of the Saarland, Germany
  5. Max Planck Institute for Dynamics and Self-Organization, Germany

Abstract

We studied the role of the synaptic ribbon for sound encoding at the synapses between inner hair cells (IHCs) and spiral ganglion neurons (SGNs) in mice lacking RIBEYE (RBEKO/KO). Electron and immunofluorescence microscopy revealed a lack of synaptic ribbons and an assembly of several small active zones (AZs) at each synaptic contact. Spontaneous and sound-evoked firing rates of SGNs and their compound action potential were reduced, indicating impaired transmission at ribbonless IHC-SGN synapses. The temporal precision of sound encoding was impaired and the recovery of SGN-firing from adaptation indicated slowed synaptic vesicle (SV) replenishment. Activation of Ca2+-channels was shifted to more depolarized potentials and exocytosis was reduced for weak depolarizations. Presynaptic Ca2+-signals showed a broader spread, compatible with the altered Ca2+-channel clustering observed by super-resolution immunofluorescence microscopy. We postulate that RIBEYE disruption is partially compensated by multi-AZ organization. The remaining synaptic deficit indicates ribbon function in SV-replenishment and Ca2+-channel regulation.

Article and author information

Author details

  1. Philippe Jean

    Institute for Auditory Neuroscience, University Medical Center Göttingen, Göttingen, Germany
    Competing interests
    The authors declare that no competing interests exist.
  2. David Lopez de la Morena

    Institute for Auditory Neuroscience, University Medical Center Göttingen, Göttingen, Germany
    Competing interests
    The authors declare that no competing interests exist.
  3. Susann Michanski

    Collaborative Research Center 889, University of Göttingen, Göttingen, Germany
    Competing interests
    The authors declare that no competing interests exist.
  4. Lina María Jaime Tobón

    Institute for Auditory Neuroscience, University Medical Center Göttingen, Göttingen, Germany
    Competing interests
    The authors declare that no competing interests exist.
  5. Rituparna Chakrabarti

    Collaborative Research Center 889, University of Göttingen, Göttingen, Germany
    Competing interests
    The authors declare that no competing interests exist.
  6. Maria Magdalena Picher

    Institute for Auditory Neuroscience, University Medical Center Göttingen, Göttingen, Germany
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-0722-3883
  7. Jakob Neef

    Institute for Auditory Neuroscience, University Medical Center Göttingen, Göttingen, Germany
    Competing interests
    The authors declare that no competing interests exist.
  8. SangYong Jung

    Institute for Auditory Neuroscience, University Medical Center Göttingen, Göttingen, Germany
    Competing interests
    The authors declare that no competing interests exist.
  9. Mehmet Gültas

    Department of Breeding Informatics, Georg-August-University Göttingen, Göttingen, Germany
    Competing interests
    The authors declare that no competing interests exist.
  10. Stephan Maxeiner

    Institute for Anatomy and Cell Biology, University of the Saarland, Homburg, Germany
    Competing interests
    The authors declare that no competing interests exist.
  11. Andreas Neef

    Bernstein Group Biophysics of Neural Computation, Max Planck Institute for Dynamics and Self-Organization, Göttingen, Germany
    For correspondence
    aneef@gwdg.de
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-4445-7478
  12. Carolin Wichmann

    Collaborative Research Center 889, University of Göttingen, Göttingen, Germany
    For correspondence
    carolin.wichmann@med.uni-goettingen.de
    Competing interests
    The authors declare that no competing interests exist.
  13. Nicola Strenzke

    Collaborative Research Center 889, University of Göttingen, Göttingen, Germany
    For correspondence
    nicola.strenzke@med.uni-goettingen.de
    Competing interests
    The authors declare that no competing interests exist.
  14. Chad Grabner

    Institute for Auditory Neuroscience, University Medical Center Göttingen, Göttingen, Germany
    For correspondence
    chad.grabner@mpibpc.mpg.de
    Competing interests
    The authors declare that no competing interests exist.
  15. Tobias Moser

    Institute for Auditory Neuroscience, University Medical Center Göttingen, Göttingen, Germany
    For correspondence
    tmoser@gwdg.de
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-7145-0533

Funding

Deutsche Forschungsgemeinschaft (Collaborative Research Center 889)

  • Carolin Wichmann
  • Nicola Strenzke
  • Tobias Moser

Deutsche Forschungsgemeinschaft (Leibniz program MO 896/51)

  • Tobias Moser

Max-Planck-Gesellschaft (Max-Planck-Fellowship)

  • Tobias Moser

Niedersächsisches Vorab

  • Tobias Moser

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Christine Petit, Institut Pasteur, France

Ethics

Animal experimentation: All experiments complied with national animal care guidelines and were approved by the University of Göttingen Board for Animal Welfare and the Animal Welfare Office of the State of Lower Saxony (permit number: 14-1391).

Version history

  1. Received: July 7, 2017
  2. Accepted: December 19, 2017
  3. Accepted Manuscript published: January 12, 2018 (version 1)
  4. Version of Record published: February 1, 2018 (version 2)

Copyright

© 2018, Jean et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 4,677
    Page views
  • 610
    Downloads
  • 62
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, Scopus, PubMed Central.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Philippe Jean
  2. David Lopez de la Morena
  3. Susann Michanski
  4. Lina María Jaime Tobón
  5. Rituparna Chakrabarti
  6. Maria Magdalena Picher
  7. Jakob Neef
  8. SangYong Jung
  9. Mehmet Gültas
  10. Stephan Maxeiner
  11. Andreas Neef
  12. Carolin Wichmann
  13. Nicola Strenzke
  14. Chad Grabner
  15. Tobias Moser
(2018)
The synaptic ribbon is critical for sound encoding at high rates and with temporal precision
eLife 7:e29275.
https://doi.org/10.7554/eLife.29275

Share this article

https://doi.org/10.7554/eLife.29275

Further reading

    1. Cell Biology
    Fabian Link, Alyssa Borges ... Markus Engstler
    Research Article

    Endocytosis is a common process observed in most eukaryotic cells, although its complexity varies among different organisms. In Trypanosoma brucei, the endocytic machinery is under special selective pressure because rapid membrane recycling is essential for immune evasion. This unicellular parasite effectively removes host antibodies from its cell surface through hydrodynamic drag and fast endocytic internalization. The entire process of membrane recycling occurs exclusively through the flagellar pocket, an extracellular organelle situated at the posterior pole of the spindle-shaped cell. The high-speed dynamics of membrane flux in trypanosomes do not seem compatible with the conventional concept of distinct compartments for early endosomes (EE), late endosomes (LE), and recycling endosomes (RE). To investigate the underlying structural basis for the remarkably fast membrane traffic in trypanosomes, we employed advanced techniques in light and electron microscopy to examine the three-dimensional architecture of the endosomal system. Our findings reveal that the endosomal system in trypanosomes exhibits a remarkably intricate structure. Instead of being compartmentalized, it constitutes a continuous membrane system, with specific functions of the endosome segregated into membrane subdomains enriched with classical markers for EE, LE, and RE. These membrane subdomains can partly overlap or are interspersed with areas that are negative for endosomal markers. This continuous endosome allows fast membrane flux by facilitated diffusion that is not slowed by multiple fission and fusion events.

    1. Cell Biology
    2. Neuroscience
    Haibin Yu, Dandan Liu ... Kai Yuan
    Research Article

    O-GlcNAcylation is a dynamic post-translational modification that diversifies the proteome. Its dysregulation is associated with neurological disorders that impair cognitive function, and yet identification of phenotype-relevant candidate substrates in a brain-region specific manner remains unfeasible. By combining an O-GlcNAc binding activity derived from Clostridium perfringens OGA (CpOGA) with TurboID proximity labeling in Drosophila, we developed an O-GlcNAcylation profiling tool that translates O-GlcNAc modification into biotin conjugation for tissue-specific candidate substrates enrichment. We mapped the O-GlcNAc interactome in major brain regions of Drosophila and found that components of the translational machinery, particularly ribosomal subunits, were abundantly O-GlcNAcylated in the mushroom body of Drosophila brain. Hypo-O-GlcNAcylation induced by ectopic expression of active CpOGA in the mushroom body decreased local translational activity, leading to olfactory learning deficits that could be rescued by dMyc overexpression-induced increase of protein synthesis. Our study provides a useful tool for future dissection of tissue-specific functions of O-GlcNAcylation in Drosophila, and suggests a possibility that O-GlcNAcylation impacts cognitive function via regulating regional translational activity in the brain.