1. Neuroscience
Download icon

Computer assisted detection of axonal bouton structural plasticity in in vivo time-lapse images

  1. Rohan Gala
  2. Daniel Lebrecht
  3. Daniela A Sahlender
  4. Anne Jorstad
  5. Graham Knott
  6. Anthony Holtmaat
  7. Armen Stepanyants  Is a corresponding author
  1. Northeastern University, United States
  2. University of Geneva, Switzerland
  3. École Polytechnique Fédérale de Lausanne, Switzerland
Tools and Resources
  • Cited 7
  • Views 1,745
  • Annotations
Cite this article as: eLife 2017;6:e29315 doi: 10.7554/eLife.29315

Abstract

The ability to measure minute structural changes in neural circuits is essential for long-term in vivo imaging studies. Here, we propose a methodology for detection and measurement of structural changes in axonal boutons imaged with time-lapse two-photon laser scanning microscopy (2PLSM). Correlative 2PLSM and 3D electron microscopy (EM) analysis, performed in mouse barrel cortex, showed that the proposed method has low fractions of false positive/negative bouton detections (2/0 out of 18), and that 2PLSM-based bouton weights are correlated with their volumes measured in EM (r=0.93). Next, the method was applied to a set of axons imaged in quick succession to characterize measurement uncertainty. The results were used to construct a statistical model in which bouton addition, elimination, and size changes are described probabilistically, rather than being treated as deterministic events. Finally, we demonstrate that the model can be used to quantify significant structural changes in boutons in long-term imaging experiments.

Article and author information

Author details

  1. Rohan Gala

    Department of Physics, Northeastern University, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Daniel Lebrecht

    Department of Basic Neurosciences, Faculty of Medicine, University of Geneva, Geneva, Switzerland
    Competing interests
    The authors declare that no competing interests exist.
  3. Daniela A Sahlender

    Biological Electron Microscopy Facility, Centre of Electron Microscopy, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
    Competing interests
    The authors declare that no competing interests exist.
  4. Anne Jorstad

    Biological Electron Microscopy Facility, Centre of Electron Microscopy, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-6438-1979
  5. Graham Knott

    Biological Electron Microscopy Facility, Centre of Electron Microscopy, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-2956-9052
  6. Anthony Holtmaat

    Department of Basic Neurosciences, Faculty of Medicine, University of Geneva, Geneva, Switzerland
    Competing interests
    The authors declare that no competing interests exist.
  7. Armen Stepanyants

    Department of Physics, Northeastern University, Boston, United States
    For correspondence
    a.stepanyants@neu.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-9387-2320

Funding

National Institutes of Health (R01 NS091421)

  • Armen Stepanyants

Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung (331003A_153448)

  • Anthony Holtmaat

Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung (CRSII3-154453)

  • Graham Knott
  • Anthony Holtmaat

Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung (51NF40_158776)

  • Anthony Holtmaat

International Foundation for Research in Paraplegia (Chair Alain Rossier)

  • Anthony Holtmaat

Air Force Office of Scientific Research (FA9550-15-1-0398)

  • Armen Stepanyants

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: All experiments were performed according to the guidelines of the Swiss Federal Act on Animal Protection and Swiss Animal Protection Ordinance. The ethics committee of the University of Geneva and the Cantonal Veterinary Office of Geneva, Switzerland (approval code GE/61/17) approved all experiments.

Reviewing Editor

  1. Eve Marder, Brandeis University, United States

Publication history

  1. Received: June 6, 2017
  2. Accepted: October 22, 2017
  3. Accepted Manuscript published: October 23, 2017 (version 1)
  4. Version of Record published: November 7, 2017 (version 2)

Copyright

© 2017, Gala et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,745
    Page views
  • 300
    Downloads
  • 7
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Download citations (links to download the citations from this article in formats compatible with various reference manager tools)

Open citations (links to open the citations from this article in various online reference manager services)

Further reading

    1. Neuroscience
    Shaun S Sanders et al.
    Research Article Updated

    The palmitoyl acyltransferase (PAT) ZDHHC14 is highly expressed in the hippocampus and is the only PAT predicted to bind Type-I PDZ domain-containing proteins. However, ZDHHC14’s neuronal roles are unknown. Here, we identify the PDZ domain-containing Membrane-associated Guanylate Kinase (MaGUK) PSD93 as a direct ZDHHC14 interactor and substrate. PSD93, but not other MaGUKs, localizes to the axon initial segment (AIS). Using lentiviral-mediated shRNA knockdown in rat hippocampal neurons, we find that ZDHHC14 controls palmitoylation and AIS clustering of PSD93 and also of Kv1 potassium channels, which directly bind PSD93. Neurodevelopmental expression of ZDHHC14 mirrors that of PSD93 and Kv1 channels and, consistent with ZDHHC14’s importance for Kv1 channel clustering, loss of ZDHHC14 decreases outward currents and increases action potential firing in hippocampal neurons. To our knowledge, these findings identify the first neuronal roles and substrates for ZDHHC14 and reveal a previously unappreciated role for palmitoylation in control of neuronal excitability.

    1. Genetics and Genomics
    2. Neuroscience
    Qiaochu Li et al.
    Research Article

    The ability to learn progressively declines with age. Neural hyperactivity has been implicated in impairing cognitive plasticity with age, but the molecular mechanisms remain elusive. Here, we show that chronic excitation of the Caenorhabditis elegans O2-sensing neurons during ageing causes a rapid decline of experience-dependent plasticity in response to environmental O2 concentration, whereas sustaining lower activity of O2-sensing neurons retains plasticity with age. We demonstrate that neural activity alters the ageing trajectory in the transcriptome of O2-sensing neurons, and our data suggest that high-activity neurons redirect resources from maintaining plasticity to sustaining continuous firing. Sustaining plasticity with age requires the K+-dependent Na+/Ca2+ (NCKX) exchanger, whereas the decline of plasticity with age in high-activity neurons acts through calmodulin and the scaffold protein Kidins220. Our findings demonstrate directly that the activity of neurons alters neuronal homeostasis to govern the age-related decline of neural plasticity and throw light on the mechanisms involved.