Computer assisted detection of axonal bouton structural plasticity in in vivo time-lapse images

  1. Rohan Gala
  2. Daniel Lebrecht
  3. Daniela A Sahlender
  4. Anne Jorstad
  5. Graham Knott
  6. Anthony Holtmaat
  7. Armen Stepanyants  Is a corresponding author
  1. Northeastern University, United States
  2. University of Geneva, Switzerland
  3. École Polytechnique Fédérale de Lausanne, Switzerland

Abstract

The ability to measure minute structural changes in neural circuits is essential for long-term in vivo imaging studies. Here, we propose a methodology for detection and measurement of structural changes in axonal boutons imaged with time-lapse two-photon laser scanning microscopy (2PLSM). Correlative 2PLSM and 3D electron microscopy (EM) analysis, performed in mouse barrel cortex, showed that the proposed method has low fractions of false positive/negative bouton detections (2/0 out of 18), and that 2PLSM-based bouton weights are correlated with their volumes measured in EM (r=0.93). Next, the method was applied to a set of axons imaged in quick succession to characterize measurement uncertainty. The results were used to construct a statistical model in which bouton addition, elimination, and size changes are described probabilistically, rather than being treated as deterministic events. Finally, we demonstrate that the model can be used to quantify significant structural changes in boutons in long-term imaging experiments.

Data availability

The following data sets were generated

Article and author information

Author details

  1. Rohan Gala

    Department of Physics, Northeastern University, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Daniel Lebrecht

    Department of Basic Neurosciences, Faculty of Medicine, University of Geneva, Geneva, Switzerland
    Competing interests
    The authors declare that no competing interests exist.
  3. Daniela A Sahlender

    Biological Electron Microscopy Facility, Centre of Electron Microscopy, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
    Competing interests
    The authors declare that no competing interests exist.
  4. Anne Jorstad

    Biological Electron Microscopy Facility, Centre of Electron Microscopy, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-6438-1979
  5. Graham Knott

    Biological Electron Microscopy Facility, Centre of Electron Microscopy, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-2956-9052
  6. Anthony Holtmaat

    Department of Basic Neurosciences, Faculty of Medicine, University of Geneva, Geneva, Switzerland
    Competing interests
    The authors declare that no competing interests exist.
  7. Armen Stepanyants

    Department of Physics, Northeastern University, Boston, United States
    For correspondence
    a.stepanyants@neu.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-9387-2320

Funding

National Institutes of Health (R01 NS091421)

  • Armen Stepanyants

Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung (331003A_153448)

  • Anthony Holtmaat

Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung (CRSII3-154453)

  • Graham Knott
  • Anthony Holtmaat

Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung (51NF40_158776)

  • Anthony Holtmaat

International Foundation for Research in Paraplegia (Chair Alain Rossier)

  • Anthony Holtmaat

Air Force Office of Scientific Research (FA9550-15-1-0398)

  • Armen Stepanyants

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: All experiments were performed according to the guidelines of the Swiss Federal Act on Animal Protection and Swiss Animal Protection Ordinance. The ethics committee of the University of Geneva and the Cantonal Veterinary Office of Geneva, Switzerland (approval code GE/61/17) approved all experiments.

Copyright

© 2017, Gala et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,538
    views
  • 355
    downloads
  • 17
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Rohan Gala
  2. Daniel Lebrecht
  3. Daniela A Sahlender
  4. Anne Jorstad
  5. Graham Knott
  6. Anthony Holtmaat
  7. Armen Stepanyants
(2017)
Computer assisted detection of axonal bouton structural plasticity in in vivo time-lapse images
eLife 6:e29315.
https://doi.org/10.7554/eLife.29315

Share this article

https://doi.org/10.7554/eLife.29315

Further reading

    1. Neuroscience
    Sam E Benezra, Kripa B Patel ... Randy M Bruno
    Research Article

    Learning alters cortical representations and improves perception. Apical tuft dendrites in cortical layer 1, which are unique in their connectivity and biophysical properties, may be a key site of learning-induced plasticity. We used both two-photon and SCAPE microscopy to longitudinally track tuft-wide calcium spikes in apical dendrites of layer 5 pyramidal neurons in barrel cortex as mice learned a tactile behavior. Mice were trained to discriminate two orthogonal directions of whisker stimulation. Reinforcement learning, but not repeated stimulus exposure, enhanced tuft selectivity for both directions equally, even though only one was associated with reward. Selective tufts emerged from initially unresponsive or low-selectivity populations. Animal movement and choice did not account for changes in stimulus selectivity. Enhanced selectivity persisted even after rewards were removed and animals ceased performing the task. We conclude that learning produces long-lasting realignment of apical dendrite tuft responses to behaviorally relevant dimensions of a task.

    1. Neuroscience
    Rongxin Fang, Aaron Halpern ... Xiaowei Zhuang
    Tools and Resources

    Multiplexed error-robust fluorescence in situ hybridization (MERFISH) allows genome-scale imaging of RNAs in individual cells in intact tissues. To date, MERFISH has been applied to image thin-tissue samples of ~10 µm thickness. Here, we present a thick-tissue three-dimensional (3D) MERFISH imaging method, which uses confocal microscopy for optical sectioning, deep learning for increasing imaging speed and quality, as well as sample preparation and imaging protocol optimized for thick samples. We demonstrated 3D MERFISH on mouse brain tissue sections of up to 200 µm thickness with high detection efficiency and accuracy. We anticipate that 3D thick-tissue MERFISH imaging will broaden the scope of questions that can be addressed by spatial genomics.