Computer assisted detection of axonal bouton structural plasticity in in vivo time-lapse images

  1. Rohan Gala
  2. Daniel Lebrecht
  3. Daniela A Sahlender
  4. Anne Jorstad
  5. Graham Knott
  6. Anthony Holtmaat
  7. Armen Stepanyants  Is a corresponding author
  1. Northeastern University, United States
  2. University of Geneva, Switzerland
  3. École Polytechnique Fédérale de Lausanne, Switzerland

Abstract

The ability to measure minute structural changes in neural circuits is essential for long-term in vivo imaging studies. Here, we propose a methodology for detection and measurement of structural changes in axonal boutons imaged with time-lapse two-photon laser scanning microscopy (2PLSM). Correlative 2PLSM and 3D electron microscopy (EM) analysis, performed in mouse barrel cortex, showed that the proposed method has low fractions of false positive/negative bouton detections (2/0 out of 18), and that 2PLSM-based bouton weights are correlated with their volumes measured in EM (r=0.93). Next, the method was applied to a set of axons imaged in quick succession to characterize measurement uncertainty. The results were used to construct a statistical model in which bouton addition, elimination, and size changes are described probabilistically, rather than being treated as deterministic events. Finally, we demonstrate that the model can be used to quantify significant structural changes in boutons in long-term imaging experiments.

Data availability

The following data sets were generated

Article and author information

Author details

  1. Rohan Gala

    Department of Physics, Northeastern University, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Daniel Lebrecht

    Department of Basic Neurosciences, Faculty of Medicine, University of Geneva, Geneva, Switzerland
    Competing interests
    The authors declare that no competing interests exist.
  3. Daniela A Sahlender

    Biological Electron Microscopy Facility, Centre of Electron Microscopy, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
    Competing interests
    The authors declare that no competing interests exist.
  4. Anne Jorstad

    Biological Electron Microscopy Facility, Centre of Electron Microscopy, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-6438-1979
  5. Graham Knott

    Biological Electron Microscopy Facility, Centre of Electron Microscopy, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-2956-9052
  6. Anthony Holtmaat

    Department of Basic Neurosciences, Faculty of Medicine, University of Geneva, Geneva, Switzerland
    Competing interests
    The authors declare that no competing interests exist.
  7. Armen Stepanyants

    Department of Physics, Northeastern University, Boston, United States
    For correspondence
    a.stepanyants@neu.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-9387-2320

Funding

National Institutes of Health (R01 NS091421)

  • Armen Stepanyants

Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung (331003A_153448)

  • Anthony Holtmaat

Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung (CRSII3-154453)

  • Graham Knott
  • Anthony Holtmaat

Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung (51NF40_158776)

  • Anthony Holtmaat

International Foundation for Research in Paraplegia (Chair Alain Rossier)

  • Anthony Holtmaat

Air Force Office of Scientific Research (FA9550-15-1-0398)

  • Armen Stepanyants

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: All experiments were performed according to the guidelines of the Swiss Federal Act on Animal Protection and Swiss Animal Protection Ordinance. The ethics committee of the University of Geneva and the Cantonal Veterinary Office of Geneva, Switzerland (approval code GE/61/17) approved all experiments.

Copyright

© 2017, Gala et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,512
    views
  • 354
    downloads
  • 16
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Rohan Gala
  2. Daniel Lebrecht
  3. Daniela A Sahlender
  4. Anne Jorstad
  5. Graham Knott
  6. Anthony Holtmaat
  7. Armen Stepanyants
(2017)
Computer assisted detection of axonal bouton structural plasticity in in vivo time-lapse images
eLife 6:e29315.
https://doi.org/10.7554/eLife.29315

Share this article

https://doi.org/10.7554/eLife.29315

Further reading

    1. Neuroscience
    Hari Teja Kalidindi, Frederic Crevecoeur
    Research Article

    Combining individual actions into sequences is a hallmark of everyday activities. Classical theories propose that the motor system forms a single specification of the sequence as a whole, leading to the coarticulation of the different elements. In contrast, recent neural recordings challenge this idea and suggest independent execution of each element specified separately. Here, we show that separate or coarticulated sequences can result from the same task-dependent controller, without implying different representations in the brain. Simulations show that planning for multiple reaches simultaneously allows separate or coarticulated sequences depending on instructions about intermediate goals. Human experiments in a two-reach sequence task validated this model. Furthermore, in co-articulated sequences, the second goal influenced long-latency stretch responses to external loads applied during the first reach, demonstrating the involvement of the sensorimotor network supporting fast feedback control. Overall, our study establishes a computational framework for sequence production that highlights the importance of feedback control in this essential motor skill.

    1. Neuroscience
    Wenyu Peng, Pan Wang ... Tao Chen
    Research Article

    Neuropathic pain (NP) is caused by a lesion or disease of the somatosensory system and is characterized by abnormal hypersensitivity to stimuli and nociceptive responses to non-noxious stimuli, affecting approximately 7–10% of the general population. However, current first-line drugs like non-steroidal anti-inflammatory agents and opioids have limitations, including dose-limiting side effects, dependence, and tolerability issues. Therefore, developing new interventions for the management of NP is urgent. In this study, we discovered that the high-frequency terahertz stimulation (HFTS) at approximately 36 THz effectively alleviates NP symptoms in mice with spared nerve injury. Computational simulation suggests that the frequency resonates with the carbonyl group in the filter region of Kv1.2 channels, facilitating the translocation of potassium ions. In vivo and in vitro results demonstrate that HFTS reduces the excitability of pyramidal neurons in the anterior cingulate cortex likely through enhancing the voltage-gated K+ and also the leak K+ conductance. This research presents a novel optical intervention strategy with terahertz waves for the treatment of NP and holds promising applications in other nervous system diseases.