An evolutionary young defense metabolite influences the root growth of plants via the ancient TOR signaling pathway

  1. Frederikke Gro Malinovsky
  2. Marie-Louise F Thomsen
  3. Sebastian J Nintemann
  4. Lea Møller Jagd
  5. Baptiste Bourgine
  6. Meike Burow
  7. Daniel J Kliebenstein  Is a corresponding author
  1. University of Copenhagen, Denmark
  2. University of Lausanne, Switzerland
  3. University of California, Davis, United States

Abstract

To optimize fitness a plant should monitor its metabolism to appropriately control growth and defense. Primary metabolism can be measured by the universally conserved TOR (Target of Rapamycin) pathway to balance growth and development with the available energy and nutrients. Recent work suggests that plants may measure defense metabolites to potentially provide a strategy ensuring fast reallocation of resources to coordinate plant growth and defense. There is little understanding of mechanisms enabling defense metabolite signaling. To identify mechanisms of defense metabolite signaling, we used glucosinolates, an important class of plant defense metabolites. We report novel signaling properties specific to one distinct glucosinolate, 3-hydroxypropylglucosinolate across plants and fungi. This defense metabolite, or derived compounds, reversibly inhibits root growth and development. 3-hydroxypropylglucosinolate signaling functions via genes in the ancient TOR pathway. If this event is not unique, this raises the possibility that other evolutionarily new plant metabolites may link to ancient signaling pathways.

Article and author information

Author details

  1. Frederikke Gro Malinovsky

    DynaMo Center, University of Copenhagen, Copenhagen, Denmark
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-9833-7968
  2. Marie-Louise F Thomsen

    DynaMo Center, University of Copenhagen, Copenhagen, Denmark
    Competing interests
    No competing interests declared.
  3. Sebastian J Nintemann

    DynaMo Center, University of Copenhagen, Copenhagen, Denmark
    Competing interests
    No competing interests declared.
  4. Lea Møller Jagd

    DynaMo Center, University of Copenhagen, Copenhagen, Denmark
    Competing interests
    No competing interests declared.
  5. Baptiste Bourgine

    Department of Plant Molecular Biology, University of Lausanne, Lausanne, Switzerland
    Competing interests
    No competing interests declared.
  6. Meike Burow

    DynaMo Center, University of Copenhagen, Copenhagen, Denmark
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-2350-985X
  7. Daniel J Kliebenstein

    Department of Plant Sciences, University of California, Davis, Davis, United States
    For correspondence
    kliebenstein@ucdavis.edu
    Competing interests
    Daniel J Kliebenstein, Reviewing editor, eLife.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-5759-3175

Funding

Danmarks Grundforskningsfond (DNRF99)

  • Frederikke Gro Malinovsky
  • Marie-Louise F Thomsen
  • Sebastian J Nintemann
  • Baptiste Bourgine
  • Meike Burow
  • Daniel J Kliebenstein

National Science Foundation (IOS 13391205)

  • Daniel J Kliebenstein

National Science Foundation (MCB 1330337)

  • Daniel J Kliebenstein

U.S. Department of Agriculture (CA-D-PLS-7033-H)

  • Daniel J Kliebenstein

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2017, Malinovsky et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,694
    views
  • 681
    downloads
  • 72
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Frederikke Gro Malinovsky
  2. Marie-Louise F Thomsen
  3. Sebastian J Nintemann
  4. Lea Møller Jagd
  5. Baptiste Bourgine
  6. Meike Burow
  7. Daniel J Kliebenstein
(2017)
An evolutionary young defense metabolite influences the root growth of plants via the ancient TOR signaling pathway
eLife 6:e29353.
https://doi.org/10.7554/eLife.29353

Share this article

https://doi.org/10.7554/eLife.29353

Further reading

    1. Biochemistry and Chemical Biology
    2. Plant Biology
    Hao Wang, Biying Zhu ... Zhaoliang Zhang
    Research Article

    Ethylamine (EA), the precursor of theanine biosynthesis, is synthesized from alanine decarboxylation by alanine decarboxylase (AlaDC) in tea plants. AlaDC evolves from serine decarboxylase (SerDC) through neofunctionalization and has lower catalytic activity. However, lacking structure information hinders the understanding of the evolution of substrate specificity and catalytic activity. In this study, we solved the X-ray crystal structures of AlaDC from Camellia sinensis (CsAlaDC) and SerDC from Arabidopsis thaliana (AtSerDC). Tyr341 of AtSerDC or the corresponding Tyr336 of CsAlaDC is essential for their enzymatic activity. Tyr111 of AtSerDC and the corresponding Phe106 of CsAlaDC determine their substrate specificity. Both CsAlaDC and AtSerDC have a distinctive zinc finger and have not been identified in any other Group II PLP-dependent amino acid decarboxylases. Based on the structural comparisons, we conducted a mutation screen of CsAlaDC. The results indicated that the mutation of L110F or P114A in the CsAlaDC dimerization interface significantly improved the catalytic activity by 110% and 59%, respectively. Combining a double mutant of CsAlaDCL110F/P114A with theanine synthetase increased theanine production 672% in an in vitro system. This study provides the structural basis for the substrate selectivity and catalytic activity of CsAlaDC and AtSerDC and provides a route to more efficient biosynthesis of theanine.

    1. Plant Biology
    Yuanyuan Bu, Xingye Dong ... Shenkui Liu
    Research Article Updated

    Urea is intensively utilized as a nitrogen fertilizer in agriculture, originating either from root uptake or from catabolism of arginine by arginase. Despite its extensive use, the underlying physiological mechanisms of urea, particularly its adverse effects on seed germination and seedling growth under salt stress, remain unclear. In this study, we demonstrate that salt stress induces excessive hydrolysis of arginine-derived urea, leading to an increase in cytoplasmic pH within seed radical cells, which, in turn, triggers salt-induced inhibition of seed germination (SISG) and hampers seedling growth. Our findings challenge the long-held belief that ammonium accumulation and toxicity are the primary causes of SISG, offering a novel perspective on the mechanism underlying these processes. This study provides significant insights into the physiological impact of urea hydrolysis under salt stress, contributing to a better understanding of SISG.