1. Neuroscience
Download icon

Astrocytes release prostaglandin E2 to modify respiratory network activity

  1. David Forsberg  Is a corresponding author
  2. Thomas Ringstedt
  3. Eric Herlenius
  1. Karolinska Institutet, Sweden
Research Advance
  • Cited 18
  • Views 1,578
  • Annotations
Cite this article as: eLife 2017;6:e29566 doi: 10.7554/eLife.29566

Abstract

Previously (Forsberg et al., 2016), we revealed that prostaglandin E2 (PGE2), released during hypercapnic challenge, increases calcium oscillations in the chemosensitive parafacial respiratory group (pFRG/RTN). Here, we demonstrate that pFRG/RTN astrocytes are the PGE2 source. Two distinct astrocyte subtypes were found using transgenic mice expressing GFP and MrgA1 receptors in astrocytes. Although most astrocytes appeared dormant during time-lapse calcium imaging, a subgroup displayed persistent, rhythmic oscillating calcium activity. These active astrocytes formed a subnetwork within the respiratory network distinct from the neuronal network. Activation of exogenous MrgA1Rs expressed in astrocytes tripled astrocytic calcium oscillation frequency in both the preBötzinger complex and pFRG/RTN. However, neurons in the preBötC were unaffected, whereas neuronal calcium oscillatory frequency in pFRG/RTN doubled. Notably, astrocyte activation in pFRG/RTN triggered local PGE2 release and blunted the hypercapnic response. Thus, astrocytes play an active role in respiratory rhythm modulation, modifying respiratory-related behavior through PGE2 release in the pFRG/RTN.

Article and author information

Author details

  1. David Forsberg

    Department of Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden
    For correspondence
    david.forsberg@ki.se
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-4719-2201
  2. Thomas Ringstedt

    Department of Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden
    Competing interests
    No competing interests declared.
  3. Eric Herlenius

    Department of Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden
    Competing interests
    Eric Herlenius, employed at the Karolinska Institutet and the Karolinska University Hospital and is a coinventor of a patent application regarding biomarkers and their relation to breathing disorders, WO2009063226..
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-6859-0620

Funding

Karolinska Institutet

  • David Forsberg
  • Eric Herlenius

Swedish Research Council (EH 2016-01111)

  • Eric Herlenius

Hjärnfonden (EH FO2017-0203)

  • Eric Herlenius

M & M Wallenberg Foundation (EH 102179)

  • Eric Herlenius

Stockholms Läns Landsting (EH 20140011)

  • Eric Herlenius

Freemasons Children's House

  • David Forsberg
  • Eric Herlenius

Swedish National Heart and Lung Foundation (20150558)

  • Eric Herlenius

Swedish National Heart and Lung Foundation (20160549)

  • David Forsberg

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: The studies were performed in strict accordance with European Community Guidelines and protocols approved by the regional ethic committee (Permit numbers: N247/13 and N265/14b).

Reviewing Editor

  1. Jan-Marino Ramirez, Seattle Children's Research Institute and University of Washington, United States

Publication history

  1. Received: June 19, 2017
  2. Accepted: October 3, 2017
  3. Accepted Manuscript published: October 4, 2017 (version 1)
  4. Version of Record published: October 19, 2017 (version 2)

Copyright

© 2017, Forsberg et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,578
    Page views
  • 285
    Downloads
  • 18
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, Scopus, PubMed Central.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Download citations (links to download the citations from this article in formats compatible with various reference manager tools)

Open citations (links to open the citations from this article in various online reference manager services)

Further reading

    1. Neuroscience
    Gustavo Della-Flora Nunes et al.
    Research Article Updated

    Schwann cell (SC) mitochondria are quickly emerging as an important regulator of myelin maintenance in the peripheral nervous system (PNS). However, the mechanisms underlying demyelination in the context of mitochondrial dysfunction in the PNS are incompletely understood. We recently showed that conditional ablation of the mitochondrial protein Prohibitin 1 (PHB1) in SCs causes a severe and fast progressing demyelinating peripheral neuropathy in mice, but the mechanism that causes failure of myelin maintenance remained unknown. Here, we report that mTORC1 and c-Jun are continuously activated in the absence of Phb1, likely as part of the SC response to mitochondrial damage. Moreover, we demonstrate that these pathways are involved in the demyelination process, and that inhibition of mTORC1 using rapamycin partially rescues the demyelinating pathology. Therefore, we propose that mTORC1 and c-Jun may play a critical role as executioners of demyelination in the context of perturbations to SC mitochondria.

    1. Neuroscience
    Katherine B LeClair et al.
    Research Article

    Social hierarchy formation is strongly evolutionarily conserved. Across species, rank within social hierarchy has large effects on health and behavior. To investigate the relationship between social rank and stress susceptibility, we exposed ranked male and female mice to social and non-social stressors and manipulated social hierarchy position. We found that rank predicts same sex social stress outcomes: dominance in males and females confers resilience while subordination confers susceptibility. Pre-existing rank does not predict non-social stress outcomes in females and weakly does so in males, but rank emerging under stress conditions reveals social interaction deficits in male and female subordinates. Both history of winning and rank of cage mates affect stress susceptibility in males: rising to the top rank through high mobility confers resilience and mice that lose dominance lose stress resilience, though gaining dominance over a subordinate animal does not confer resilience. Overall, we have demonstrated a relationship between social status and stress susceptibility, particularly when taking into account individual history of winning and the overall hierarchy landscape in male and female mice.