Astrocytes release prostaglandin E2 to modify respiratory network activity

  1. David Forsberg  Is a corresponding author
  2. Thomas Ringstedt
  3. Eric Herlenius
  1. Karolinska Institutet, Sweden

Abstract

Previously (Forsberg et al., 2016), we revealed that prostaglandin E2 (PGE2), released during hypercapnic challenge, increases calcium oscillations in the chemosensitive parafacial respiratory group (pFRG/RTN). Here, we demonstrate that pFRG/RTN astrocytes are the PGE2 source. Two distinct astrocyte subtypes were found using transgenic mice expressing GFP and MrgA1 receptors in astrocytes. Although most astrocytes appeared dormant during time-lapse calcium imaging, a subgroup displayed persistent, rhythmic oscillating calcium activity. These active astrocytes formed a subnetwork within the respiratory network distinct from the neuronal network. Activation of exogenous MrgA1Rs expressed in astrocytes tripled astrocytic calcium oscillation frequency in both the preBötzinger complex and pFRG/RTN. However, neurons in the preBötC were unaffected, whereas neuronal calcium oscillatory frequency in pFRG/RTN doubled. Notably, astrocyte activation in pFRG/RTN triggered local PGE2 release and blunted the hypercapnic response. Thus, astrocytes play an active role in respiratory rhythm modulation, modifying respiratory-related behavior through PGE2 release in the pFRG/RTN.

Article and author information

Author details

  1. David Forsberg

    Department of Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden
    For correspondence
    david.forsberg@ki.se
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-4719-2201
  2. Thomas Ringstedt

    Department of Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden
    Competing interests
    No competing interests declared.
  3. Eric Herlenius

    Department of Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden
    Competing interests
    Eric Herlenius, employed at the Karolinska Institutet and the Karolinska University Hospital and is a coinventor of a patent application regarding biomarkers and their relation to breathing disorders, WO2009063226..
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-6859-0620

Funding

Karolinska Institutet

  • David Forsberg
  • Eric Herlenius

Swedish Research Council (EH 2016-01111)

  • Eric Herlenius

Hjärnfonden (EH FO2017-0203)

  • Eric Herlenius

M & M Wallenberg Foundation (EH 102179)

  • Eric Herlenius

Stockholms Läns Landsting (EH 20140011)

  • Eric Herlenius

Freemasons Children's House

  • David Forsberg
  • Eric Herlenius

Swedish National Heart and Lung Foundation (20150558)

  • Eric Herlenius

Swedish National Heart and Lung Foundation (20160549)

  • David Forsberg

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: The studies were performed in strict accordance with European Community Guidelines and protocols approved by the regional ethic committee (Permit numbers: N247/13 and N265/14b).

Copyright

© 2017, Forsberg et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,818
    views
  • 302
    downloads
  • 37
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. David Forsberg
  2. Thomas Ringstedt
  3. Eric Herlenius
(2017)
Astrocytes release prostaglandin E2 to modify respiratory network activity
eLife 6:e29566.
https://doi.org/10.7554/eLife.29566

Share this article

https://doi.org/10.7554/eLife.29566

Further reading

    1. Neuroscience
    Matthew R Kleinman, David J Foster
    Research Article

    Sequenced reactivations of hippocampal neurons called replays, concomitant with sharp-wave ripples in the local field potential, are critical for the consolidation of episodic memory, but whether replays depend on the brain’s reward or novelty signals is unknown. Here, we combined chemogenetic silencing of dopamine neurons in ventral tegmental area (VTA) and simultaneous electrophysiological recordings in dorsal hippocampal CA1, in freely behaving male rats experiencing changes to reward magnitude and environmental novelty. Surprisingly, VTA silencing did not prevent ripple increases where reward was increased, but caused dramatic, aberrant ripple increases where reward was unchanged. These increases were associated with increased reverse-ordered replays. On familiar tracks this effect disappeared, and ripples tracked reward prediction error (RPE), indicating that non-VTA reward signals were sufficient to direct replay. Our results reveal a novel dependence of hippocampal replay on dopamine, and a role for a VTA-independent RPE signal that is reliable only in familiar environments.

    1. Neuroscience
    Shuo Zhang, Yan Tian ... Haiyan Wu
    Research Article

    Active inference integrates perception, decision-making, and learning into a united theoretical framework, providing an efficient way to trade off exploration and exploitation by minimizing (expected) free energy. In this study, we asked how the brain represents values and uncertainties (novelty and variability), and resolves these uncertainties under the active inference framework in the exploration-exploitation trade-off. Twenty-five participants performed a contextual two-armed bandit task, with electroencephalogram (EEG) recordings. By comparing the model evidence for active inference and reinforcement learning models of choice behavior, we show that active inference better explains human decision-making under novelty and variability, which entails exploration or information seeking. The EEG sensor-level results show that the activity in the frontal, central, and parietal regions is associated with novelty, while the activity in the frontal and central brain regions is associated with variability. The EEG source-level results indicate that the expected free energy is encoded in the frontal pole and middle frontal gyrus and uncertainties are encoded in different brain regions but with overlap. Our study dissociates the expected free energy and uncertainties in active inference theory and their neural correlates, speaking to the construct validity of active inference in characterizing cognitive processes of human decisions. It provides behavioral and neural evidence of active inference in decision processes and insights into the neural mechanism of human decisions under uncertainties.