Signal integration at spherical bushy cells enhances representation of temporal structure but limits its range

  1. Christian Keine  Is a corresponding author
  2. Rudolf Rübsamen
  3. Bernhard Englitz
  1. University of Leipzig, Germany
  2. Radboud University, Netherlands

Abstract

Neuronal inhibition is crucial for temporally precise and reproducible signaling in the auditory brainstem.  We showed previously (Keine et al., 2016) that for various synthetic stimuli, spherical bushy cell (SBC) activity in the Mongolian gerbil is rendered sparser and more reliable by subtractive inhibition. Employing environmental stimuli, we demonstrate here that the inhibitory gain control becomes even more effective, keeping stimulated response rates equal to spontaneous ones. However, what are the costs of this modulation? We performed dynamic stimulus reconstructions based on neural population responses for auditory nerve (ANF) input and SBC output to assess the influence of inhibition on signal representation. Compared to ANFs, reconstructions of natural stimuli based on SBC responses were temporally more precise, but the match between acoustic and represented signal decreased. Hence, for natural sounds, inhibition at SBCs plays an even stronger role in achieving sparse and reproducible neuronal activity, while compromising general signal representation.

Article and author information

Author details

  1. Christian Keine

    Faculty of Bioscience, Pharmacy and Psychology, University of Leipzig, Leipzig, Germany
    For correspondence
    christian.keine@gmail.com
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-8953-2593
  2. Rudolf Rübsamen

    Faculty of Bioscience, Pharmacy and Psychology, University of Leipzig, Leipzig, Germany
    Competing interests
    The authors declare that no competing interests exist.
  3. Bernhard Englitz

    Department of Neurophysiology, Donders Center for Neuroscience, Radboud University, Nijmegen, Netherlands
    Competing interests
    The authors declare that no competing interests exist.

Funding

Deutsche Forschungsgemeinschaft (RU 390/19-1)

  • Rudolf Rübsamen

Deutsche Forschungsgemeinschaft (RU 390/20-1)

  • Rudolf Rübsamen

European Commission (Marie Sklodowska Curie Fellowship 660328)

  • Bernhard Englitz

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Ian Winter

Ethics

Animal experimentation: Animal experimentation: All experiments were approved by the Saxonian District Government, Leipzig (TVV 06/09), and conducted according to the European Communities Council Directive (86/609/ EEC).

Version history

  1. Received: June 23, 2017
  2. Accepted: September 25, 2017
  3. Accepted Manuscript published: September 25, 2017 (version 1)
  4. Version of Record published: October 3, 2017 (version 2)

Copyright

© 2017, Keine et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 787
    Page views
  • 109
    Downloads
  • 11
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, Scopus, PubMed Central.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Christian Keine
  2. Rudolf Rübsamen
  3. Bernhard Englitz
(2017)
Signal integration at spherical bushy cells enhances representation of temporal structure but limits its range
eLife 6:e29639.
https://doi.org/10.7554/eLife.29639

Share this article

https://doi.org/10.7554/eLife.29639