CDK9-dependent RNA polymerase II pausing controls transcription initiation

  1. Saskia Gressel
  2. Björn Schwalb  Is a corresponding author
  3. Tim Michael Decker
  4. Weihua Qin
  5. Heinrich Leonhardt
  6. Dirk Eick  Is a corresponding author
  7. Patrick Cramer  Is a corresponding author
  1. Max Planck Institute for Biophysical Chemistry, Germany
  2. Helmholtz Center Munich, Germany
  3. Ludwig-Maximilians-Universität München, Germany

Abstract

Gene transcription can be activated by decreasing the duration of RNA polymerase II pausing in the promoter-proximal region, but how this is achieved remains unclear. Here we use a 'multi-omics' approach to demonstrate that the duration of polymerase pausing generally limits the productive frequency of transcription initiation in human cells ('pause-initiation limit'). We further engineer a human cell line to allow for specific and rapid inhibition of the P-TEFb kinase CDK9, which is implicated in polymerase pause release. CDK9 activity decreases the pause duration but also increases the productive initiation frequency. This shows that CDK9 stimulates release of paused polymerase and activates transcription by increasing the number of transcribing polymerases and thus the amount of mRNA synthesized per time. CDK9 activity is also associated with long-range chromatin interactions, suggesting that enhancers can influence the pause-initiation limit to regulate transcription.

Data availability

The following data sets were generated
The following previously published data sets were used

Article and author information

Author details

  1. Saskia Gressel

    Department of Molecular Biology, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-0261-675X
  2. Björn Schwalb

    Department of Molecular Biology, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
    For correspondence
    bjoern.schwalb@mpibpc.mpg.de
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-2987-2622
  3. Tim Michael Decker

    Department of Molecular Epigenetics, Helmholtz Center Munich, Munich, Germany
    Competing interests
    The authors declare that no competing interests exist.
  4. Weihua Qin

    Department of Biology II, Ludwig-Maximilians-Universität München, Munich, Germany
    Competing interests
    The authors declare that no competing interests exist.
  5. Heinrich Leonhardt

    Department of Biology II, Ludwig-Maximilians-Universität München, Munich, Germany
    Competing interests
    The authors declare that no competing interests exist.
  6. Dirk Eick

    Department of Molecular Epigenetics, Helmholtz Center Munich, Munich, Germany
    For correspondence
    eick@helmholtz-muenchen.de
    Competing interests
    The authors declare that no competing interests exist.
  7. Patrick Cramer

    Department of Molecular Biology, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
    For correspondence
    patrick.cramer@mpibpc.mpg.de
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-5454-7755

Funding

European Research Council (TRANSREGULON)

  • Patrick Cramer

Volkswagen Foundation

  • Patrick Cramer

Deutsche Forschungsgemeinschaft (SFB 1064 TP A17)

  • Heinrich Leonhardt

Deutsche Forschungsgemeinschaft (SFB 1064)

  • Dirk Eick

Max Planck Institute for Biophysical Chemistry (Open-access funding)

  • Patrick Cramer

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2017, Gressel et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 9,547
    views
  • 1,661
    downloads
  • 186
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Saskia Gressel
  2. Björn Schwalb
  3. Tim Michael Decker
  4. Weihua Qin
  5. Heinrich Leonhardt
  6. Dirk Eick
  7. Patrick Cramer
(2017)
CDK9-dependent RNA polymerase II pausing controls transcription initiation
eLife 6:e29736.
https://doi.org/10.7554/eLife.29736

Share this article

https://doi.org/10.7554/eLife.29736

Further reading

    1. Computational and Systems Biology
    2. Neuroscience
    Cesare V Parise, Marc O Ernst
    Research Article

    Audiovisual information reaches the brain via both sustained and transient input channels, representing signals’ intensity over time or changes thereof, respectively. To date, it is unclear to what extent transient and sustained input channels contribute to the combined percept obtained through multisensory integration. Based on the results of two novel psychophysical experiments, here we demonstrate the importance of the transient (instead of the sustained) channel for the integration of audiovisual signals. To account for the present results, we developed a biologically inspired, general-purpose model for multisensory integration, the multisensory correlation detectors, which combines correlated input from unimodal transient channels. Besides accounting for the results of our psychophysical experiments, this model could quantitatively replicate several recent findings in multisensory research, as tested against a large collection of published datasets. In particular, the model could simultaneously account for the perceived timing of audiovisual events, multisensory facilitation in detection tasks, causality judgments, and optimal integration. This study demonstrates that several phenomena in multisensory research that were previously considered unrelated, all stem from the integration of correlated input from unimodal transient channels.

    1. Computational and Systems Biology
    Franck Simon, Maria Colomba Comes ... Herve Isambert
    Tools and Resources

    Live-cell microscopy routinely provides massive amounts of time-lapse images of complex cellular systems under various physiological or therapeutic conditions. However, this wealth of data remains difficult to interpret in terms of causal effects. Here, we describe CausalXtract, a flexible computational pipeline that discovers causal and possibly time-lagged effects from morphodynamic features and cell–cell interactions in live-cell imaging data. CausalXtract methodology combines network-based and information-based frameworks, which is shown to discover causal effects overlooked by classical Granger and Schreiber causality approaches. We showcase the use of CausalXtract to uncover novel causal effects in a tumor-on-chip cellular ecosystem under therapeutically relevant conditions. In particular, we find that cancer-associated fibroblasts directly inhibit cancer cell apoptosis, independently from anticancer treatment. CausalXtract uncovers also multiple antagonistic effects at different time delays. Hence, CausalXtract provides a unique computational tool to interpret live-cell imaging data for a range of fundamental and translational research applications.