A transgenic toolkit for visualizing and perturbing microtubules reveals unexpected functions in the epidermis

  1. Andrew Muroyama
  2. Terry Lechler  Is a corresponding author
  1. Duke University Medical Center, United States

Abstract

The physiological functions of microtubules (MTs) are poorly understood in many differentiated cell types. We developed a genetic toolkit to study MT dynamics and function in diverse cells. Using TRE-EB1-GFP mice, we found that MT dynamics are strongly suppressed in differentiated keratinocytes in two distinct steps due to alterations in both growth rate and lifetime. To understand the functions of these MT populations, we developed TRE-spastin mice to disrupt MTs in specific cell types. MT perturbation in post-mitotic keratinocytes had profound consequences on epidermal morphogenesis. We uncoupled cell-autonomous roles in cell flattening from non-cell-autonomous requirements for MTs in regulating proliferation, differentiation, and tissue architecture. This work uncovers physiological roles for MTs in epidermal development, and the tools described here will be broadly useful to study MT dynamics and functions in mammals.

Article and author information

Author details

  1. Andrew Muroyama

    Department of Dermatology, Duke University Medical Center, Durham, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Terry Lechler

    Department of Dermatology, Duke University Medical Center, Durham, United States
    For correspondence
    terry.lechler@duke.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-3901-7013

Funding

National Institute of General Medical Sciences (Research Grant)

  • Terry Lechler

National Institute of Arthritis and Musculoskeletal and Skin Diseases (Research Grant)

  • Terry Lechler

National Science Foundation (Graduate Student Fellowship)

  • Andrew Muroyama

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Valerie Horsley, Yale University, United States

Ethics

Animal experimentation: All mouse studies were performed in accordance with our protocol (A147-15-05) approved by the Institutional Animal Care and Use Committee of Duke University.

Version history

  1. Received: June 22, 2017
  2. Accepted: September 1, 2017
  3. Accepted Manuscript published: September 4, 2017 (version 1)
  4. Version of Record published: September 19, 2017 (version 2)

Copyright

© 2017, Muroyama & Lechler

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,619
    views
  • 399
    downloads
  • 28
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Andrew Muroyama
  2. Terry Lechler
(2017)
A transgenic toolkit for visualizing and perturbing microtubules reveals unexpected functions in the epidermis
eLife 6:e29834.
https://doi.org/10.7554/eLife.29834

Share this article

https://doi.org/10.7554/eLife.29834

Further reading

    1. Cancer Biology
    2. Cell Biology
    Camille Dantzer, Justine Vaché ... Violaine Moreau
    Research Article

    Immune checkpoint inhibitors have produced encouraging results in cancer patients. However, the majority of ß-catenin-mutated tumors have been described as lacking immune infiltrates and resistant to immunotherapy. The mechanisms by which oncogenic ß-catenin affects immune surveillance remain unclear. Herein, we highlighted the involvement of ß-catenin in the regulation of the exosomal pathway and, by extension, in immune/cancer cell communication in hepatocellular carcinoma (HCC). We showed that mutated ß-catenin represses expression of SDC4 and RAB27A, two main actors in exosome biogenesis, in both liver cancer cell lines and HCC patient samples. Using nanoparticle tracking analysis and live-cell imaging, we further demonstrated that activated ß-catenin represses exosome release. Then, we demonstrated in 3D spheroid models that activation of β-catenin promotes a decrease in immune cell infiltration through a defect in exosome secretion. Taken together, our results provide the first evidence that oncogenic ß-catenin plays a key role in exosome biogenesis. Our study gives new insight into the impact of ß-catenin mutations on tumor microenvironment remodeling, which could lead to the development of new strategies to enhance immunotherapeutic response.

    1. Cell Biology
    Zhongyun Xie, Yongping Chai ... Wei Li
    Research Article

    Asymmetric cell divisions (ACDs) generate two daughter cells with identical genetic information but distinct cell fates through epigenetic mechanisms. However, the process of partitioning different epigenetic information into daughter cells remains unclear. Here, we demonstrate that the nucleosome remodeling and deacetylase (NuRD) complex is asymmetrically segregated into the surviving daughter cell rather than the apoptotic one during ACDs in Caenorhabditis elegans. The absence of NuRD triggers apoptosis via the EGL-1-CED-9-CED-4-CED-3 pathway, while an ectopic gain of NuRD enables apoptotic daughter cells to survive. We identify the vacuolar H+–adenosine triphosphatase (V-ATPase) complex as a crucial regulator of NuRD’s asymmetric segregation. V-ATPase interacts with NuRD and is asymmetrically segregated into the surviving daughter cell. Inhibition of V-ATPase disrupts cytosolic pH asymmetry and NuRD asymmetry. We suggest that asymmetric segregation of V-ATPase may cause distinct acidification levels in the two daughter cells, enabling asymmetric epigenetic inheritance that specifies their respective life-versus-death fates.