A corticostriatal deficit promotes temporal distortion of automatic action in ageing

  1. Miriam Matamales
  2. Zala Skrbis
  3. Matthew R Bailey
  4. Peter D Balsam
  5. Bernard W Balleine
  6. Jürgen Götz
  7. Jesus Bertran-Gonzalez  Is a corresponding author
  1. University of Queensland, Australia
  2. Columbia University, United States
  3. University of New South Wales, Australia

Abstract

The acquisition of motor skills involves implementing action sequences that increase task efficiency while reducing cognitive loads. This learning capacity depends on specific cortico-basal ganglia circuits that are affected by normal ageing. Here, combining a series of novel behavioural tasks with extensive neuronal mapping and targeted cell manipulations in mice, we explored how ageing of cortico-basal ganglia networks alters the microstructure of action throughout sequence learning. We found that, after extended training, aged mice produced shorter actions and displayed squeezed automatic behaviours characterised by ultrafast oligomeric action chunks that correlated with deficient reorganisation of corticostriatal activity. Chemogenetic disruption of a striatal subcircuit in young mice reproduced age-related within-sequence features, and the introduction of an action-related feedback cue temporarily restored normal sequence structure in aged mice. Our results reveal static properties of aged cortico-basal ganglia networks that introduce temporal limits to action automaticity, something that can compromise procedural learning in ageing.

Article and author information

Author details

  1. Miriam Matamales

    Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, University of Queensland, Brisbane, Australia
    Competing interests
    The authors declare that no competing interests exist.
  2. Zala Skrbis

    Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, University of Queensland, Brisbane, Australia
    Competing interests
    The authors declare that no competing interests exist.
  3. Matthew R Bailey

    Psychology Department, Columbia University, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Peter D Balsam

    Psychology Department, Barnard College, Columbia University, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Bernard W Balleine

    Decision Neuroscience Laboratory, School of Psychology, University of New South Wales, Sydney, Australia
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-8618-7950
  6. Jürgen Götz

    Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, University of Queensland, Brisbane, Australia
    Competing interests
    The authors declare that no competing interests exist.
  7. Jesus Bertran-Gonzalez

    Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, University of Queensland, Brisbane, Australia
    For correspondence
    j.bertran@unsw.edu.au
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-3794-1782

Funding

Australian Research Council (DE160101275)

  • Jesus Bertran-Gonzalez

Australian Research Council (DP130101932)

  • Jürgen Götz

National Health and Medical Research Council (APP1037746)

  • Jürgen Götz

National Health and Medical Research Council (APP1003150)

  • Jürgen Götz

National Health and Medical Research Council (GNT1079561)

  • Bernard W Balleine

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: All procedures were approved by the University of Queensland Animal Ethics Committee (QBI/412/14/NHMRC and QBI/027/12/NHMRC) in accordance with the Animal Care and Protection Regulation (Queensland Government, 2012) and the Australian Code of Practice for the Care and Use of Animals for Scientific Purposes (National Health and Medical Research Council, 2013). All surgery was performed under isoflurane gas anesthesia and butorphanol analgesia, and every effort was made to minimize suffering.

Reviewing Editor

  1. Geoffrey Schoenbaum, NIDA Intramural Research Program, United States

Publication history

  1. Received: June 25, 2017
  2. Accepted: October 22, 2017
  3. Accepted Manuscript published: October 23, 2017 (version 1)
  4. Version of Record published: November 8, 2017 (version 2)

Copyright

© 2017, Matamales et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,541
    Page views
  • 251
    Downloads
  • 6
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, Scopus, PubMed Central.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Miriam Matamales
  2. Zala Skrbis
  3. Matthew R Bailey
  4. Peter D Balsam
  5. Bernard W Balleine
  6. Jürgen Götz
  7. Jesus Bertran-Gonzalez
(2017)
A corticostriatal deficit promotes temporal distortion of automatic action in ageing
eLife 6:e29908.
https://doi.org/10.7554/eLife.29908

Further reading

    1. Neuroscience
    Sophie L Fayad, Guillaume Ourties ... Nathalie Leresche
    Research Article Updated

    Cav3.2 T-type calcium channel is a major molecular actor of neuropathic pain in peripheral sensory neurons, but its involvement at the supraspinal level is almost unknown. In the anterior pretectum (APT), a hub of connectivity of the somatosensory system involved in pain perception, we show that Cav3.2 channels are expressed in a subpopulation of GABAergic neurons coexpressing parvalbumin (PV). In these PV-expressing neurons, Cav3.2 channels contribute to a high-frequency-bursting activity, which is increased in the spared nerve injury model of neuropathy. Specific deletion of Cav3.2 channels in APT neurons reduced both the initiation and maintenance of mechanical and cold allodynia. These data are a direct demonstration that centrally expressed Cav3.2 channels also play a fundamental role in pain pathophysiology.

    1. Neuroscience
    Sarah M Lurie, James E Kragel ... Joel L Voss
    Research Article

    Hippocampal-dependent memory is thought to be supported by distinct connectivity states, with strong input to the hippocampus benefitting encoding and weak input benefitting retrieval. Previous research in rodents suggests that the hippocampal theta oscillation orchestrates the transition between these states, with opposite phase angles predicting minimal versus maximal input. We investigated whether this phase dependence exists in humans using network-targeted intracranial stimulation. Intracranial local field potentials were recorded from individuals with epilepsy undergoing medically necessary stereotactic electroencephalographic recording. In each subject, biphasic bipolar direct electrical stimulation was delivered to lateral temporal sites with demonstrated connectivity to hippocampus. Lateral temporal stimulation evoked ipsilateral hippocampal potentials with distinct early and late components. Using evoked component amplitude to measure functional connectivity, we assessed whether the phase of hippocampal theta predicted relatively high versus low connectivity. We observed an increase in the continuous phase-amplitude relationship selective to the early and late components of the response evoked by lateral temporal stimulation. The maximal difference in these evoked component amplitudes occurred across 180 degrees of separation in the hippocampal theta rhythm; i.e., the greatest difference in component amplitude was observed when stimulation was delivered at theta peak versus trough. The pattern of theta phase dependence observed for hippocampus was not identified for control locations. These findings demonstrate that hippocampal receptivity to input varies with theta phase, suggesting that theta phase reflects connectivity states of human hippocampal networks. These findings confirm a putative mechanism by which neural oscillations modulate human hippocampal function.