Msn2/4 regulate expression of glycolytic enzymes and control transition from quiescence to growth

  1. Zheng Kuang
  2. Sudarshan Pinglay
  3. Hongkai Ji  Is a corresponding author
  4. Jef D Boeke  Is a corresponding author
  1. NYU Langone Medical Center, United States
  2. Johns Hopkins University School of Public Health, United States

Abstract

Nutrient availability and stresses impact a cell's decision to enter a growth state or a quiescent state. Acetyl-CoA stimulates cell growth under nutrient-limiting conditions, but how cells generate acetyl-CoA under starvation stress is less understood. Here, we show that general stress response factors, Msn2 and Msn4, function as master transcriptional regulators of yeast glycolysis via directly binding and activating genes encoding glycolytic enzymes. Yeast cells lacking Msn2 and Msn4 exhibit prevalent repression of glycolysis genes and a significant delay of acetyl-CoA accumulation and reentry into growth from quiescence. Thus Msn2/4 exhibit a dual role in activating carbohydrate metabolism genes and stress response genes. These results suggest a possible mechanism by which starvation-induced stress response factors may prime quiescent cells to reenter growth through glycolysis when nutrients are limited.

Data availability

The following data sets were generated
The following previously published data sets were used

Article and author information

Author details

  1. Zheng Kuang

    Institute for Systems Genetics, NYU Langone Medical Center, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-5855-8371
  2. Sudarshan Pinglay

    Institute for Systems Genetics, NYU Langone Medical Center, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-8781-1476
  3. Hongkai Ji

    Department of Biostatistics, Johns Hopkins University School of Public Health, Baltimore, United States
    For correspondence
    hji@jhu.edu
    Competing interests
    The authors declare that no competing interests exist.
  4. Jef D Boeke

    Institute for Systems Genetics, NYU Langone Medical Center, New York, United States
    For correspondence
    jef.boeke@nyumc.org
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-5322-4946

Funding

National Institutes of Health (U54GM103520)

  • Zheng Kuang
  • Jef D Boeke

National Institutes of Health (R01HG006841)

  • Zheng Kuang
  • Hongkai Ji

National Institutes of Health (R01HG006282)

  • Zheng Kuang
  • Hongkai Ji

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2017, Kuang et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,042
    views
  • 464
    downloads
  • 54
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Zheng Kuang
  2. Sudarshan Pinglay
  3. Hongkai Ji
  4. Jef D Boeke
(2017)
Msn2/4 regulate expression of glycolytic enzymes and control transition from quiescence to growth
eLife 6:e29938.
https://doi.org/10.7554/eLife.29938

Share this article

https://doi.org/10.7554/eLife.29938

Further reading

    1. Chromosomes and Gene Expression
    Shihui Chen, Carolyn Marie Phillips
    Research Article

    RNA interference (RNAi) is a conserved pathway that utilizes Argonaute proteins and their associated small RNAs to exert gene regulatory function on complementary transcripts. While the majority of germline-expressed RNAi proteins reside in perinuclear germ granules, it is unknown whether and how RNAi pathways are spatially organized in other cell types. Here, we find that the small RNA biogenesis machinery is spatially and temporally organized during Caenorhabditis elegans embryogenesis. Specifically, the RNAi factor, SIMR-1, forms visible concentrates during mid-embryogenesis that contain an RNA-dependent RNA polymerase, a poly-UG polymerase, and the unloaded nuclear Argonaute protein, NRDE-3. Curiously, coincident with the appearance of the SIMR granules, the small RNAs bound to NRDE-3 switch from predominantly CSR-class 22G-RNAs to ERGO-dependent 22G-RNAs. NRDE-3 binds ERGO-dependent 22G-RNAs in the somatic cells of larvae and adults to silence ERGO-target genes; here we further demonstrate that NRDE-3-bound, CSR-class 22G-RNAs repress transcription in oocytes. Thus, our study defines two separable roles for NRDE-3, targeting germline-expressed genes during oogenesis to promote global transcriptional repression, and switching during embryogenesis to repress recently duplicated genes and retrotransposons in somatic cells, highlighting the plasticity of Argonaute proteins and the need for more precise temporal characterization of Argonaute-small RNA interactions.

    1. Chromosomes and Gene Expression
    2. Genetics and Genomics
    Steven Henikoff, David L Levens
    Insight

    A new method for mapping torsion provides insights into the ways that the genome responds to the torsion generated by RNA polymerase II.