Transient hypothyroidism favors oligodendrocyte generation providing functional remyelination in the adult mouse brain

  1. Sylvie REMAUD
  2. Fernando C Ortiz
  3. Marie Perret-Jeanneret
  4. Marie-Stéphane Aigrot
  5. Jean-David Gothié
  6. Csaba Fekete
  7. Zsuzsanna Kvárta-Papp
  8. Balázs Gereben
  9. Dominique Langui
  10. Catherine Lubetzki
  11. Maria Cecilia Angulo
  12. Bernard Zalc
  13. Barbara Demeneix  Is a corresponding author
  1. Muséum d'Histoire Naturelle, Sorbonne Universités, France
  2. INSERM U1128, France
  3. Sorbonne Universités UPMC Univ Paris 06, Inserm, CNRS, France
  4. Institute of Experimental Medicine, Hungarian Academy of Sciences, Hungary

Peer review process

This article was accepted for publication via eLife's original publishing model. eLife publishes the authors' accepted manuscript as a PDF only version before the full Version of Record is ready for publication. Peer reviews are published along with the Version of Record.

History

  1. Version of Record published
  2. Accepted Manuscript updated
  3. Accepted Manuscript published
  4. Accepted
  5. Received

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Sylvie REMAUD
  2. Fernando C Ortiz
  3. Marie Perret-Jeanneret
  4. Marie-Stéphane Aigrot
  5. Jean-David Gothié
  6. Csaba Fekete
  7. Zsuzsanna Kvárta-Papp
  8. Balázs Gereben
  9. Dominique Langui
  10. Catherine Lubetzki
  11. Maria Cecilia Angulo
  12. Bernard Zalc
  13. Barbara Demeneix
(2017)
Transient hypothyroidism favors oligodendrocyte generation providing functional remyelination in the adult mouse brain
eLife 6:e29996.
https://doi.org/10.7554/eLife.29996

Share this article

https://doi.org/10.7554/eLife.29996