Synaptic up-scaling preserves motor circuit output after chronic, natural inactivity

  1. Joseph M Santin  Is a corresponding author
  2. Mauricio Vallejo
  3. Lynn K Hartzler
  1. University of Missouri, United States
  2. Wright State University, United States

Abstract

Neural systems use homeostatic plasticity to maintain normal brain functions and to prevent abnormal activity.  Surprisingly, homeostatic mechanisms that regulate circuit output have mainly been demonstrated during artificial and/or pathological perturbations.  Natural, physiological scenarios that activate these stabilizing mechanisms in neural networks of mature animals remain elusive.  To establish the extent to which a naturally inactive circuit engages mechanisms of homeostatic plasticity, we utilized the respiratory motor circuit in bullfrogs that normally remains inactive for several months during the winter.  We found that inactive respiratory motoneurons exhibit a classic form of homeostatic plasticity, up-scaling of AMPA-glutamate receptors.  Up-scaling increased the synaptic strength of respiratory motoneurons and acted to boost motor amplitude from the respiratory network following months of inactivity.  Our results show that synaptic scaling sustains strength of the respiratory motor output following months of inactivity, thereby supporting a major neuroscience hypothesis in a normal context for an adult animal.

Article and author information

Author details

  1. Joseph M Santin

    Division of Biological Sciences, University of Missouri, Columbia, United States
    For correspondence
    santinj@missouri.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-1308-623X
  2. Mauricio Vallejo

    Department of Biological Sciences, Wright State University, Dayton, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Lynn K Hartzler

    Department of Biological Sciences, Wright State University, Dayton, United States
    Competing interests
    The authors declare that no competing interests exist.

Funding

Wright State University Department of Biological Sciences: Biology Award for Research Excellence

  • Joseph M Santin

Wright State University Biomedical Sciences PhD Program

  • Joseph M Santin

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: Experiments were approved by the Wright State University Institutional Animal Care and Use Committee (protocol number 1047).

Reviewing Editor

  1. Yukiko Goda, RIKEN, Japan

Version history

  1. Received: June 28, 2017
  2. Accepted: September 11, 2017
  3. Accepted Manuscript published: September 15, 2017 (version 1)
  4. Version of Record published: October 11, 2017 (version 2)

Copyright

© 2017, Santin et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,395
    Page views
  • 186
    Downloads
  • 12
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Joseph M Santin
  2. Mauricio Vallejo
  3. Lynn K Hartzler
(2017)
Synaptic up-scaling preserves motor circuit output after chronic, natural inactivity
eLife 6:e30005.
https://doi.org/10.7554/eLife.30005

Further reading

    1. Neuroscience
    2. Structural Biology and Molecular Biophysics
    Megan M Cullinan, Robert C Klipp ... John R Bankston
    Research Article

    Acid-sensing ion channels (ASICs) are trimeric proton-gated sodium channels. Recent work has shown that these channels play a role in necroptosis following prolonged acidic exposure like occurs in stroke. The C-terminus of ASIC1a is thought to mediate necroptotic cell death through interaction with receptor interacting serine threonine kinase 1 (RIPK1). This interaction is hypothesized to be inhibited at rest via an interaction between the C- and N-termini which blocks the RIPK1 binding site. Here, we use two transition metal ion FRET methods to investigate the conformational dynamics of the termini at neutral and acidic pH. We do not find evidence that the termini are close enough to be bound while the channel is at rest and find that the termini may modestly move closer together during acidification. At rest, the N-terminus adopts a conformation parallel to the membrane about 10 Å away. The distal end of the C-terminus may also spend time close to the membrane at rest. After acidification, the proximal portion of the N-terminus moves marginally closer to the membrane whereas the distal portion of the C-terminus swings away from the membrane. Together these data suggest that a new hypothesis for RIPK1 binding during stroke is needed.

    1. Neuroscience
    Anke Braun, Tobias H Donner
    Research Article

    Decisions under uncertainty are often biased by the history of preceding sensory input, behavioral choices, or received outcomes. Behavioral studies of perceptual decisions suggest that such history-dependent biases affect the accumulation of evidence and can be adapted to the correlation structure of the sensory environment. Here, we systematically varied this correlation structure while human participants performed a canonical perceptual choice task. We tracked the trial-by-trial variations of history biases via behavioral modeling and of a neural signature of decision formation via magnetoencephalography (MEG). The history bias was flexibly adapted to the environment and exerted a selective effect on the build-up (not baseline level) of action-selective motor cortical activity during decision formation. This effect added to the impact of the current stimulus. We conclude that the build-up of action plans in human motor cortical circuits is shaped by dynamic prior expectations that result from an adaptive interaction with the environment.