Regulation of rice root development by a retrotransposon acting as a microRNA sponge
Abstract
It is well documented that transposable elements (TEs) can regulate the expression of neighbouring genes. However, their ability to act in trans and influence ectopic loci has been reported rarely. We searched in rice transcriptomes for tissue-specific expression of TEs and found them to be regulated developmentally. They often shared sequence homology with co-expressed genes and contained potential microRNA-binding sites, which suggested possible contributions to gene regulation. In fact, we have identified a retrotransposon that is highly transcribed in roots and whose spliced transcript constitutes a target mimic for miR171. miR171 destabilizes mRNAs encoding the root-specific family of SCARECROW-Like transcription factors. We demonstrate that retrotransposon-derived transcripts act as decoys for miR171, triggering its degradation and thus results in the root-specific accumulation of SCARECROW-Like mRNAs. Such transposon-mediated post-transcriptional control of miR171 levels is conserved in diverse rice species.
Data availability
-
rice whole transcriptome surveyed by RNA-Seq and Paired-end technologyPublicly available at the NCBI Gene Expression Omnibus (accession no: GSE16631).
-
Expression divergence of the rice retrogenesPublicly available at the DNA Data Bank of Japan (accession no: DRA000385).
-
Comparative transcriptomics of three Poaceae species reveals patterns of gene expression evolutionPublicly available at the DNA Data Bank of Japan (accession no: SRP008821).
-
Florigen-induced Transposon Silencing in the Shoot Apex during Floral Induction in RicePublicly available at the DNA Data Bank of Japan (accession no: DRA002310).
-
RNA-sequencing Reveals Previously Unannotated Protein-coding and miRNA-coding Genes Expressed in Aleurone Cells of Rice SeedPublicly available at the NCBI Gene Expression Omnibus (accession no: SRP028376).
-
Control of agricultural traits by hc-siRNA associated MITEs in ricePublicly available at the NCBI Gene Expression Omnibus (accession no: GSE50778).
-
Rapid diversification of five Oryza AA genomes associated with rice adaptationPublicly available at the NCBI Gene Expression Omnibus (accession no: PRJNA264484).
-
Rapid diversification of five Oryza AA genomes associated with rice adaptationPublicly available at the NCBI Gene Expression Omnibus (accession no: PRJNA264480).
-
Rapid diversification of five Oryza AA genomes associated with rice adaptationPublicly available at the NCBI Gene Expression Omnibus (accession no: PRJNA264485).
-
Genome-wide analysis of Dongxiang wild rice (Oryza rufipogon Griff.) to investigate lost/acquired genes during rice domesticationPublicly available at the DNA Data Bank of Japan (accession no: SRP070627).
-
Transcriptome Analysis of Rice Root Heterosis by RNA-SeqPublicly available at the NCBI Gene Expression Omnibus (accession no: GSE41797).
-
A high resolution map of the Arabidopsis thaliana developmental transcriptome based on RNA-seq profilingPublicly available at the NCBI Gene Expression Omnibus (accession no: PRJNA314076).
-
Identification of small RNAs in rice AGO1 complexes and their targetsPublicly available at the NCBI Gene Expression Omnibus (accession no: GSE18251).
-
Endogenous small RNAs of meristematic and a terminally differentiated tissue of ricePublicly available at the NCBI Gene Expression Omnibus (accession no: GSE16350).
-
Characterization of AGO1-/AGO4-associated smRNAsPublicly available at the NCBI Gene Expression Omnibus (accession no: GSE28591).
Article and author information
Author details
Funding
European Research Council (322621)
- Jungnam Cho
- Jerzy Paszkowski
Gatsby Charitable Foundation (AT3273/GLE)
- Jerzy Paszkowski
The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.
Copyright
© 2017, Cho & Paszkowski
This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.
Metrics
-
- 3,848
- views
-
- 801
- downloads
-
- 63
- citations
Views, downloads and citations are aggregated across all versions of this paper published by eLife.
Download links
Downloads (link to download the article as PDF)
Open citations (links to open the citations from this article in various online reference manager services)
Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)
Further reading
-
- Microbiology and Infectious Disease
- Plant Biology
Programmed cell death occurring during plant development (dPCD) is a fundamental process integral for plant growth and reproduction. Here, we investigate the connection between developmentally controlled PCD and fungal accommodation in Arabidopsis thaliana roots, focusing on the root cap-specific transcription factor ANAC033/SOMBRERO (SMB) and the senescence-associated nuclease BFN1. Mutations of both dPCD regulators increase colonization by the beneficial fungus Serendipita indica, primarily in the differentiation zone. smb-3 mutants additionally exhibit hypercolonization around the meristematic zone and a delay of S. indica-induced root-growth promotion. This demonstrates that root cap dPCD and rapid post-mortem clearance of cellular corpses represent a physical defense mechanism restricting microbial invasion of the root. Additionally, reporter lines and transcriptional analysis revealed that BFN1 expression is downregulated during S. indica colonization in mature root epidermal cells, suggesting a transcriptional control mechanism that facilitates the accommodation of beneficial microbes in the roots.
-
- Cell Biology
- Plant Biology
Plants distribute many nutrients to chloroplasts during leaf development and maturation. When leaves senesce or experience sugar starvation, the autophagy machinery degrades chloroplast proteins to facilitate efficient nutrient reuse. Here, we report on the intracellular dynamics of an autophagy pathway responsible for piecemeal degradation of chloroplast components. Through live-cell monitoring of chloroplast morphology, we observed the formation of chloroplast budding structures in sugar-starved leaves. These buds were then released and incorporated into the vacuolar lumen as an autophagic cargo termed a Rubisco-containing body. The budding structures did not accumulate in mutants of core autophagy machinery, suggesting that autophagosome creation is required for forming chloroplast buds. Simultaneous tracking of chloroplast morphology and autophagosome development revealed that the isolation membranes of autophagosomes interact closely with part of the chloroplast surface before forming chloroplast buds. Chloroplasts then protrude at the site associated with the isolation membranes, which divide synchronously with autophagosome maturation. This autophagy-related division does not require DYNAMIN-RELATED PROTEIN 5B, which constitutes the division ring for chloroplast proliferation in growing leaves. An unidentified division machinery may thus fragment chloroplasts for degradation in coordination with the development of the chloroplast-associated isolation membrane.