1. Chromosomes and Gene Expression
Download icon

Independent manipulation of histone H3 modifications in individual nucleosomes reveals the contributions of sister histones to transcription

  1. Zhen Zhou
  2. Yu-Ting Liu
  3. Li Ma
  4. Ting Gong
  5. Yanan Hu
  6. Hong-Tao Li
  7. Chen Cai
  8. Ling-Li Zhang
  9. Gang Wei
  10. Jin-Qiu Zhou  Is a corresponding author
  1. Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, China
  2. CAS-MPG Partner Institute for Computational Biology, China
Research Article
  • Cited 6
  • Views 2,272
  • Annotations
Cite this article as: eLife 2017;6:e30178 doi: 10.7554/eLife.30178

Abstract

Histone tail modifications can greatly influence chromatin-associated processes. Asymmetrically modified nucleosomes exist in multiple cell types; however, whether modifications on both sister histones contribute equally to chromatin dynamics remains elusive. Here, we devised a bivalent nucleosome system that allowed for the constitutive assembly of asymmetrically modified sister histone H3s in nucleosomes in Saccharomyces cerevisiae. The sister H3K36 methylations independently affected cryptic transcription in gene coding regions, whereas sister H3K79 methylation had cooperative effects on gene silencing near telomeres. H3K4 methylation on sister histones played an independent role in suppressing the recruitment of Gal4 activator to the GAL1 promoter and inhibiting GAL1 transcription. Under starvation stress, sister H3K4 methylations acted cooperatively, independently or redundantly to regulate transcription. Thus, we provide a unique tool for comparing symmetrical and asymmetrical modifications of sister histone H3s in vivo.

Article and author information

Author details

  1. Zhen Zhou

    State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai, China
    Competing interests
    The authors declare that no competing interests exist.
  2. Yu-Ting Liu

    State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai, China
    Competing interests
    The authors declare that no competing interests exist.
  3. Li Ma

    Key Laboratory of Computational Biology, CAS-MPG Partner Institute for Computational Biology, Shanghai, China
    Competing interests
    The authors declare that no competing interests exist.
  4. Ting Gong

    State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai, China
    Competing interests
    The authors declare that no competing interests exist.
  5. Yanan Hu

    Key Laboratory of Computational Biology, CAS-MPG Partner Institute for Computational Biology, Shanghai, China
    Competing interests
    The authors declare that no competing interests exist.
  6. Hong-Tao Li

    State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai, China
    Competing interests
    The authors declare that no competing interests exist.
  7. Chen Cai

    State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai, China
    Competing interests
    The authors declare that no competing interests exist.
  8. Ling-Li Zhang

    State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai, China
    Competing interests
    The authors declare that no competing interests exist.
  9. Gang Wei

    Key Laboratory of Computational Biology, CAS-MPG Partner Institute for Computational Biology, Shanghai, China
    Competing interests
    The authors declare that no competing interests exist.
  10. Jin-Qiu Zhou

    State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai, China
    For correspondence
    jqzhou@sibcb.ac.cn
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-1986-8611

Funding

National Natural Science Foundation of China (31521061)

  • Jin-Qiu Zhou

National Natural Science Foundation of China (31230040)

  • Jin-Qiu Zhou

Ministry of Science and Technology of the People's Republic of China (2016YFA0500701)

  • Jin-Qiu Zhou

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Tim Formosa, University of Utah School of Medicine, United States

Publication history

  1. Received: July 5, 2017
  2. Accepted: October 12, 2017
  3. Accepted Manuscript published: October 13, 2017 (version 1)
  4. Version of Record published: November 8, 2017 (version 2)

Copyright

© 2017, Zhou et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,272
    Page views
  • 443
    Downloads
  • 6
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, Scopus, PubMed Central.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Download citations (links to download the citations from this article in formats compatible with various reference manager tools)

Open citations (links to open the citations from this article in various online reference manager services)

Further reading

    1. Chromosomes and Gene Expression
    2. Genetics and Genomics
    Anthony S Findley et al.
    Research Article

    Genetic effects on gene expression and splicing can be modulated by cellular and environmental factors; yet interactions between genotypes, cell type and treatment have not been comprehensively studied together. We used an induced pluripotent stem cell system to study multiple cell types derived from the same individuals and exposed them to a large panel of treatments. Cellular responses involved different genes and pathways for gene expression and splicing, and were highly variable across contexts. For thousands of genes, we identified variable allelic expression across contexts and characterized different types of gene-environment interactions, many of which are associated with complex traits. Promoter functional and evolutionary features distinguished genes with elevated allelic imbalance mean and variance. On average half of the genes with dynamic regulatory interactions were missed by large eQTL mapping studies, indicating the importance of exploring multiple treatments to reveal previously unrecognized regulatory loci that may be important for disease.

    1. Cancer Biology
    2. Chromosomes and Gene Expression
    Shou Liu et al.
    Research Article

    ARID1A is one of the most frequently mutated epigenetic regulators in a wide spectrum of cancers. Recent studies have shown that ARID1A deficiency induces global changes in the epigenetic landscape of enhancers and promoters. These broad and complex effects make it challenging to identify the driving mechanisms of ARID1A deficiency in promoting cancer progression. Here, we identified the anti-senescence effect of Arid1a deficiency in the progression of pancreatic intraepithelial neoplasia (PanIN) by profiling the transcriptome of individual PanINs in a mouse model. In a human cell line model, we found that ARID1A deficiency upregulates the expression of Aldehyde Dehydrogenase 1 Family Member A1 (ALDH1A1), which plays an essential role in attenuating the senescence induced by oncogenic KRAS through scavenging reactive oxygen species (ROS). As a subunit of the SWI/SNF chromatin remodeling complex, our ATAC sequencing data showed that ARID1A deficiency increases the accessibility of the enhancer region of ALDH1A1. This study provides the first evidence that ARID1A deficiency promotes pancreatic tumorigenesis by attenuating KRAS-induced senescence through the upregulation of ALDH1A1 expression.