Independent manipulation of histone H3 modifications in individual nucleosomes reveals the contributions of sister histones to transcription

  1. Zhen Zhou
  2. Yu-Ting Liu
  3. Li Ma
  4. Ting Gong
  5. Yanan Hu
  6. Hong-Tao Li
  7. Chen Cai
  8. Ling-Li Zhang
  9. Gang Wei
  10. Jin-Qiu Zhou  Is a corresponding author
  1. Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, China
  2. CAS-MPG Partner Institute for Computational Biology, China

Abstract

Histone tail modifications can greatly influence chromatin-associated processes. Asymmetrically modified nucleosomes exist in multiple cell types; however, whether modifications on both sister histones contribute equally to chromatin dynamics remains elusive. Here, we devised a bivalent nucleosome system that allowed for the constitutive assembly of asymmetrically modified sister histone H3s in nucleosomes in Saccharomyces cerevisiae. The sister H3K36 methylations independently affected cryptic transcription in gene coding regions, whereas sister H3K79 methylation had cooperative effects on gene silencing near telomeres. H3K4 methylation on sister histones played an independent role in suppressing the recruitment of Gal4 activator to the GAL1 promoter and inhibiting GAL1 transcription. Under starvation stress, sister H3K4 methylations acted cooperatively, independently or redundantly to regulate transcription. Thus, we provide a unique tool for comparing symmetrical and asymmetrical modifications of sister histone H3s in vivo.

Article and author information

Author details

  1. Zhen Zhou

    State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai, China
    Competing interests
    The authors declare that no competing interests exist.
  2. Yu-Ting Liu

    State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai, China
    Competing interests
    The authors declare that no competing interests exist.
  3. Li Ma

    Key Laboratory of Computational Biology, CAS-MPG Partner Institute for Computational Biology, Shanghai, China
    Competing interests
    The authors declare that no competing interests exist.
  4. Ting Gong

    State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai, China
    Competing interests
    The authors declare that no competing interests exist.
  5. Yanan Hu

    Key Laboratory of Computational Biology, CAS-MPG Partner Institute for Computational Biology, Shanghai, China
    Competing interests
    The authors declare that no competing interests exist.
  6. Hong-Tao Li

    State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai, China
    Competing interests
    The authors declare that no competing interests exist.
  7. Chen Cai

    State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai, China
    Competing interests
    The authors declare that no competing interests exist.
  8. Ling-Li Zhang

    State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai, China
    Competing interests
    The authors declare that no competing interests exist.
  9. Gang Wei

    Key Laboratory of Computational Biology, CAS-MPG Partner Institute for Computational Biology, Shanghai, China
    Competing interests
    The authors declare that no competing interests exist.
  10. Jin-Qiu Zhou

    State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai, China
    For correspondence
    jqzhou@sibcb.ac.cn
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-1986-8611

Funding

National Natural Science Foundation of China (31521061)

  • Jin-Qiu Zhou

National Natural Science Foundation of China (31230040)

  • Jin-Qiu Zhou

Ministry of Science and Technology of the People's Republic of China (2016YFA0500701)

  • Jin-Qiu Zhou

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2017, Zhou et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,772
    views
  • 476
    downloads
  • 9
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Zhen Zhou
  2. Yu-Ting Liu
  3. Li Ma
  4. Ting Gong
  5. Yanan Hu
  6. Hong-Tao Li
  7. Chen Cai
  8. Ling-Li Zhang
  9. Gang Wei
  10. Jin-Qiu Zhou
(2017)
Independent manipulation of histone H3 modifications in individual nucleosomes reveals the contributions of sister histones to transcription
eLife 6:e30178.
https://doi.org/10.7554/eLife.30178

Share this article

https://doi.org/10.7554/eLife.30178

Further reading

    1. Chromosomes and Gene Expression
    Carmina Lichauco, Eric J Foss ... Antonio Bedalov
    Research Article

    The association between late replication timing and low transcription rates in eukaryotic heterochromatin is well known, yet the specific mechanisms underlying this link remain uncertain. In Saccharomyces cerevisiae, the histone deacetylase Sir2 is required for both transcriptional silencing and late replication at the repetitive ribosomal DNA (rDNA) arrays. We have previously reported that in the absence of SIR2, a de-repressed RNA PolII repositions MCM replicative helicases from their loading site at the ribosomal origin, where they abut well-positioned, high-occupancy nucleosomes, to an adjacent region with lower nucleosome occupancy. By developing a method that can distinguish activation of closely spaced MCM complexes, here we show that the displaced MCMs at rDNA origins have increased firing propensity compared to the nondisplaced MCMs. Furthermore, we found that both activation of the repositioned MCMs and low occupancy of the adjacent nucleosomes critically depend on the chromatin remodeling activity of FUN30. Our study elucidates the mechanism by which Sir2 delays replication timing, and it demonstrates, for the first time, that activation of a specific replication origin in vivo relies on the nucleosome context shaped by a single chromatin remodeler.

    1. Chromosomes and Gene Expression
    Carlos Moreno-Yruela, Beat Fierz
    Insight

    Specialized magnetic beads that bind target proteins to a cryogenic electron microscopy grid make it possible to study the structure of protein complexes from dilute samples.