Phosphatidylinositol 4,5-bisphosphate optical uncaging potentiates exocytosis

  1. Alexander M Walter  Is a corresponding author
  2. Rainer Müller
  3. Bassam Tawfik
  4. Keimpe DB Wierda
  5. Paulo S Pinheiro
  6. André Nadler
  7. Anthony W McCarthy
  8. Iwona Ziomkiewicz
  9. Martin Kruse
  10. Gregor Reither
  11. Jens Rettig
  12. Martin Lehmann
  13. Volker Haucke
  14. Bertil Hille
  15. Carsten Schultz
  16. Jakob Balslev Sorensen  Is a corresponding author
  1. University of Copenhagen, Denmark
  2. European Molecular Biology Laboratory (EMBL), Germany
  3. Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Germany
  4. University of Washington School of Medicine, United States
  5. Saarland University, Germany

Abstract

Phosphatidylinositol-4,5-bisphosphate [PI(4,5)P2] is essential for exocytosis. Classical ways of manipulating PI(4,5)P2 levels are slower than metabolism, making it difficult to distinguish effects of PI(4,5)P2 from those of its metabolites. We developed a membrane-permeant, photoactivatable PI(4,5)P2, which is loaded into cells in an inactive form and activated by light, allowing sub-second increases in PI(4,5)P2 levels. By combining this compound with electrophysiological measurements in mouse adrenal chromaffin cells, we show that PI(4,5)P2 uncaging potentiates exocytosis and identify synaptotagmin-1 (the Ca2+ sensor for exocytosis) and Munc13-2 (a vesicle priming protein) as the relevant effector proteins. PI(4,5)P2 activation of exocytosis did not depend on the PI(4,5)P2-binding CAPS-proteins, suggesting that PI(4,5)P2 uncaging bypasses CAPS-function. Finally, PI(4,5)P2 uncaging triggered the rapid fusion of a subset of readily-releasable vesicles, revealing a rapid role of PI(4,5)P2 in fusion triggering. Thus, optical uncaging of signaling lipids can uncover their rapid effects on cellular processes and identify lipid effectors.

Article and author information

Author details

  1. Alexander M Walter

    Center for Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
    For correspondence
    awalter@fmp-berlin.de
    Competing interests
    No competing interests declared.
  2. Rainer Müller

    Cell Biology and Biophysics Unit, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-3464-494X
  3. Bassam Tawfik

    Center for Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-1193-8494
  4. Keimpe DB Wierda

    Center for Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-8784-9490
  5. Paulo S Pinheiro

    Center for Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
    Competing interests
    No competing interests declared.
  6. André Nadler

    Cell Biology and Biophysics Unit, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
    Competing interests
    No competing interests declared.
  7. Anthony W McCarthy

    Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Berlin, Germany
    Competing interests
    No competing interests declared.
  8. Iwona Ziomkiewicz

    Center for Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
    Competing interests
    Iwona Ziomkiewicz, Performed experiments as an employee of University of Copenhagen and is now an employee of AstraZeneca; IZ has no financial investments in AstraZeneca.
  9. Martin Kruse

    Department of Physiology and Biophysics, University of Washington School of Medicine, Seattle, United States
    Competing interests
    No competing interests declared.
  10. Gregor Reither

    Cell Biology and Biophysics Unit, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
    Competing interests
    No competing interests declared.
  11. Jens Rettig

    Center for Integrative Physiology and Molecular Medicine, Saarland University, Homburg, Germany
    Competing interests
    No competing interests declared.
  12. Martin Lehmann

    Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Berlin, Germany
    Competing interests
    No competing interests declared.
  13. Volker Haucke

    Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Berlin, Germany
    Competing interests
    No competing interests declared.
  14. Bertil Hille

    Department of Physiology and Biophysics, University of Washington School of Medicine, Seattle, United States
    Competing interests
    No competing interests declared.
  15. Carsten Schultz

    Cell Biology and Biophysics Unit, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
    Competing interests
    No competing interests declared.
  16. Jakob Balslev Sorensen

    Center for Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
    For correspondence
    jakobbs@sund.ku.dk
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-5465-3769

Funding

European Union 7th Framework programme (HEALTH-F2-2009-242167)

  • Jakob Balslev Sorensen

The independent Research Fond Denmark

  • Jakob Balslev Sorensen

The Novo Nordisk Foundation

  • Jakob Balslev Sorensen

The Lundbeck Foundation

  • Paulo S Pinheiro
  • Jakob Balslev Sorensen

European Molecular Biology Laboratory

  • Carsten Schultz

Deutsche Forschungsgemeinschaft (Transregio83)

  • Alexander M Walter
  • Carsten Schultz

Deutsche Forschungsgemeinschaft (Emmy Noether Programme)

  • Alexander M Walter

National Institutes of Health (R37NS008174)

  • Bertil Hille

Alexander von Humboldt-Stiftung

  • Martin Kruse

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: Permission to keep and breed knockout mice for this study was obtained from The Danish Animal Experiments Inspectorate (2006/562−43, 2012−15−2935−00001). The animals were maintained in an AAALAC-accredited stable in accordance with institutional guidelines as overseen by the Institutional Animal Care and Use Committee (IACUC).

Copyright

© 2017, Walter et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,776
    views
  • 839
    downloads
  • 43
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Alexander M Walter
  2. Rainer Müller
  3. Bassam Tawfik
  4. Keimpe DB Wierda
  5. Paulo S Pinheiro
  6. André Nadler
  7. Anthony W McCarthy
  8. Iwona Ziomkiewicz
  9. Martin Kruse
  10. Gregor Reither
  11. Jens Rettig
  12. Martin Lehmann
  13. Volker Haucke
  14. Bertil Hille
  15. Carsten Schultz
  16. Jakob Balslev Sorensen
(2017)
Phosphatidylinositol 4,5-bisphosphate optical uncaging potentiates exocytosis
eLife 6:e30203.
https://doi.org/10.7554/eLife.30203

Share this article

https://doi.org/10.7554/eLife.30203

Further reading

    1. Cell Biology
    2. Developmental Biology
    Heungjin Ryu, Kibum Nam ... Jung-Hoon Park
    Research Article

    In most murine species, spermatozoa exhibit a falciform apical hook at the head end. The function of the sperm hook is not yet clearly understood. In this study, we investigate the role of the sperm hook in the migration of spermatozoa through the female reproductive tract in Mus musculus (C57BL/6), using a deep tissue imaging custom-built two-photon microscope. Through live reproductive tract imaging, we found evidence indicating that the sperm hook aids in the attachment of spermatozoa to the epithelium and facilitates interactions between spermatozoa and the epithelium during migration in the uterus and oviduct. We also observed synchronized sperm beating, which resulted from the spontaneous unidirectional rearrangement of spermatozoa in the uterus. Based on live imaging of spermatozoa-epithelium interaction dynamics, we propose that the sperm hook plays a crucial role in successful migration through the female reproductive tract by providing anchor-like mechanical support and facilitating interactions between spermatozoa and the female reproductive tract in the house mouse.

    1. Cell Biology
    Yue Miao, Yongtao Du ... Mei Ding
    Research Article

    The spatiotemporal transition of small GTPase Rab5 to Rab7 is crucial for early-to-late endosome maturation, yet the precise mechanism governing Rab5-to-Rab7 switching remains elusive. USP8, a ubiquitin-specific protease, plays a prominent role in the endosomal sorting of a wide range of transmembrane receptors and is a promising target in cancer therapy. Here, we identified that USP8 is recruited to Rab5-positive carriers by Rabex5, a guanine nucleotide exchange factor (GEF) for Rab5. The recruitment of USP8 dissociates Rabex5 from early endosomes (EEs) and meanwhile promotes the recruitment of the Rab7 GEF SAND-1/Mon1. In USP8-deficient cells, the level of active Rab5 is increased, while the Rab7 signal is decreased. As a result, enlarged EEs with abundant intraluminal vesicles accumulate and digestive lysosomes are rudimentary. Together, our results reveal an important and unexpected role of a deubiquitinating enzyme in endosome maturation.