Suppression and facilitation of human neural responses

  1. Michael-Paul Schallmo  Is a corresponding author
  2. Alexander M Kale
  3. Rachel Millin
  4. Anastasia V Flevaris
  5. Zoran Brkanac
  6. Richard AE Edden
  7. Raphael A Bernier
  8. Scott Murray
  1. University of Washington, United States
  2. Johns Hopkins University, United States

Abstract

Efficient neural processing depends on regulating responses through suppression and facilitation of neural activity. Utilizing a well-known visual motion paradigm that evokes behavioral suppression and facilitation, and combining 5 different methodologies (behavioral psychophysics, computational modeling, functional MRI, pharmacology, and magnetic resonance spectroscopy), we provide evidence that challenges commonly held assumptions about the neural processes underlying suppression and facilitation. We show that: 1) both suppression and facilitation can emerge from a single, computational principle - divisive normalization; there is no need to invoke separate neural mechanisms, 2) neural suppression and facilitation in the motion-selective area MT mirror perception, but strong suppression also occurs in earlier visual areas, and 3) suppression is not primarily driven by GABA-mediated inhibition. Thus, while commonly used spatial suppression paradigms may provide insight into neural response magnitudes in visual areas, they should not be used to infer neural inhibition.

Data availability

The following data sets were generated

Article and author information

Author details

  1. Michael-Paul Schallmo

    Department of Psychology, University of Washington, Seattle, United States
    For correspondence
    schallmo@uw.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-8252-8607
  2. Alexander M Kale

    Department of Psychology, University of Washington, Seattle, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-7668-2800
  3. Rachel Millin

    Department of Psychology, University of Washington, Seattle, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Anastasia V Flevaris

    Department of Psychology, University of Washington, Seattle, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Zoran Brkanac

    Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Richard AE Edden

    Department of Radiology and Radiological Science, Johns Hopkins University, Baltimore, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Raphael A Bernier

    Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Scott Murray

    Department of Psychology, University of Washington, Seattle, United States
    Competing interests
    The authors declare that no competing interests exist.

Funding

National Eye Institute (F32 EY025121)

  • Michael-Paul Schallmo
  • Scott Murray

National Institute of Mental Health (R01 MH106520)

  • Raphael A Bernier
  • Scott Murray

National Institute of Biomedical Imaging and Bioengineering (P41 EB015909)

  • Richard AE Edden

National Eye Institute (T32 EY007031)

  • Michael-Paul Schallmo
  • Scott Murray

National Institute of Biomedical Imaging and Bioengineering (R01 EB016089)

  • Richard AE Edden

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Human subjects: Subjects provided written informed consent prior to participation and were compensated for their time. All experimental procedures were approved by the University of Washington Institutional Review Board (protocol #s: 556, 1678, 28148), and conformed to the ethical principles for research on human subjects from the Declaration of Helsinki.

Copyright

© 2018, Schallmo et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,497
    views
  • 325
    downloads
  • 55
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Michael-Paul Schallmo
  2. Alexander M Kale
  3. Rachel Millin
  4. Anastasia V Flevaris
  5. Zoran Brkanac
  6. Richard AE Edden
  7. Raphael A Bernier
  8. Scott Murray
(2018)
Suppression and facilitation of human neural responses
eLife 7:e30334.
https://doi.org/10.7554/eLife.30334

Share this article

https://doi.org/10.7554/eLife.30334

Further reading

    1. Neuroscience
    Claire Meissner-Bernard, Friedemann Zenke, Rainer W Friedrich
    Research Article

    Biological memory networks are thought to store information by experience-dependent changes in the synaptic connectivity between assemblies of neurons. Recent models suggest that these assemblies contain both excitatory and inhibitory neurons (E/I assemblies), resulting in co-tuning and precise balance of excitation and inhibition. To understand computational consequences of E/I assemblies under biologically realistic constraints we built a spiking network model based on experimental data from telencephalic area Dp of adult zebrafish, a precisely balanced recurrent network homologous to piriform cortex. We found that E/I assemblies stabilized firing rate distributions compared to networks with excitatory assemblies and global inhibition. Unlike classical memory models, networks with E/I assemblies did not show discrete attractor dynamics. Rather, responses to learned inputs were locally constrained onto manifolds that ‘focused’ activity into neuronal subspaces. The covariance structure of these manifolds supported pattern classification when information was retrieved from selected neuronal subsets. Networks with E/I assemblies therefore transformed the geometry of neuronal coding space, resulting in continuous representations that reflected both relatedness of inputs and an individual’s experience. Such continuous representations enable fast pattern classification, can support continual learning, and may provide a basis for higher-order learning and cognitive computations.

    1. Neuroscience
    Raven Star Wallace, Bronte Mckeown ... Jonathan Smallwood
    Research Article

    Movie-watching is a central aspect of our lives and an important paradigm for understanding the brain mechanisms behind cognition as it occurs in daily life. Contemporary views of ongoing thought argue that the ability to make sense of events in the ‘here and now’ depend on the neural processing of incoming sensory information by auditory and visual cortex, which are kept in check by systems in association cortex. However, we currently lack an understanding of how patterns of ongoing thoughts map onto the different brain systems when we watch a film, partly because methods of sampling experience disrupt the dynamics of brain activity and the experience of movie-watching. Our study established a novel method for mapping thought patterns onto the brain activity that occurs at different moments of a film, which does not disrupt the time course of brain activity or the movie-watching experience. We found moments when experience sampling highlighted engagement with multi-sensory features of the film or highlighted thoughts with episodic features, regions of sensory cortex were more active and subsequent memory for events in the movie was better—on the other hand, periods of intrusive distraction emerged when activity in regions of association cortex within the frontoparietal system was reduced. These results highlight the critical role sensory systems play in the multi-modal experience of movie-watching and provide evidence for the role of association cortex in reducing distraction when we watch films.