Neurexin-Neuroligin 1 regulates synaptic morphology and function via the WAVE regulatory complex in Drosophila neuromuscular junction
Abstract
Neuroligins are postsynaptic adhesion molecules that are essential for postsynaptic specialization and synaptic function. But the underlying molecular mechanisms of Neuroligin functions remain unclear. We found that Drosophila Neuroligin1 (DNlg1) regulates synaptic structure and function through WAVE regulatory complex (WRC)-mediated postsynaptic actin reorganization. The disruption of DNlg1, DNlg2, or their presynaptic partner Neurexin (DNrx) led to a dramatic decrease in the amount of F-actin. Further study showed that DNlg1, but not DNlg2 or DNlg3, directly interacts with the WRC via its C-terminal interacting receptor sequence. That interaction is required to recruit WRC to the postsynaptic membrane to promote F-actin assembly. Furthermore, the interaction between DNlg1 and the WRC is essential for DNlg1 to rescue the morphological and electrophysiological defects in dnlg1 knockout mutants. Our results reveal a novel mechanism by which the DNrx-DNlg1 trans-synaptic interaction coordinates structural and functional properties at the neuromuscular junction.
Article and author information
Author details
Funding
National Natural Science Foundation of China (31430035)
- Wei Xie
National Natural Science Foundation of China (311714041)
- Wei Xie
National Basic Research Program (2012CB517903)
- Wei Xie
National Natural Science Foundation of China (31401107)
- Moyi Li
China Postdoctoral Science Foundation (2015T80476)
- Moyi Li
China Postdoctoral Science Foundation (2014M560369)
- Moyi Li
Canadian Institutes of Health Research (CCI117959)
- Zhengping Jia
NSFC-CIHR (81161120543)
- Wei Xie
The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.
Copyright
© 2018, Xing et al.
This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.
Metrics
-
- 3,751
- views
-
- 536
- downloads
-
- 43
- citations
Views, downloads and citations are aggregated across all versions of this paper published by eLife.
Download links
Downloads (link to download the article as PDF)
Open citations (links to open the citations from this article in various online reference manager services)
Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)
Further reading
-
- Cell Biology
- Developmental Biology
Eukaryotic cells depend on exocytosis to direct intracellularly synthesized material toward the extracellular space or the plasma membrane, so exocytosis constitutes a basic function for cellular homeostasis and communication between cells. The secretory pathway includes biogenesis of secretory granules (SGs), their maturation and fusion with the plasma membrane (exocytosis), resulting in release of SG content to the extracellular space. The larval salivary gland of Drosophila melanogaster is an excellent model for studying exocytosis. This gland synthesizes mucins that are packaged in SGs that sprout from the trans-Golgi network and then undergo a maturation process that involves homotypic fusion, condensation, and acidification. Finally, mature SGs are directed to the apical domain of the plasma membrane with which they fuse, releasing their content into the gland lumen. The exocyst is a hetero-octameric complex that participates in tethering of vesicles to the plasma membrane during constitutive exocytosis. By precise temperature-dependent gradual activation of the Gal4-UAS expression system, we have induced different levels of silencing of exocyst complex subunits, and identified three temporarily distinctive steps of the regulated exocytic pathway where the exocyst is critically required: SG biogenesis, SG maturation, and SG exocytosis. Our results shed light on previously unidentified functions of the exocyst along the exocytic pathway. We propose that the exocyst acts as a general tethering factor in various steps of this cellular process.
-
- Cell Biology
The spatiotemporal transition of small GTPase Rab5 to Rab7 is crucial for early-to-late endosome maturation, yet the precise mechanism governing Rab5-to-Rab7 switching remains elusive. USP8, a ubiquitin-specific protease, plays a prominent role in the endosomal sorting of a wide range of transmembrane receptors and is a promising target in cancer therapy. Here, we identified that USP8 is recruited to Rab5-positive carriers by Rabex5, a guanine nucleotide exchange factor (GEF) for Rab5. The recruitment of USP8 dissociates Rabex5 from early endosomes (EEs) and meanwhile promotes the recruitment of the Rab7 GEF SAND-1/Mon1. In USP8-deficient cells, the level of active Rab5 is increased, while the Rab7 signal is decreased. As a result, enlarged EEs with abundant intraluminal vesicles accumulate and digestive lysosomes are rudimentary. Together, our results reveal an important and unexpected role of a deubiquitinating enzyme in endosome maturation.