Cell lineage and cell cycling analyses of the 4d micromere using live imaging in the marine annelid Platynereis dumerilii

  1. B Duygu Özpolat  Is a corresponding author
  2. Mette Handberg-Thorsager
  3. Michel Vervoort
  4. Guillaume Balavoine  Is a corresponding author
  1. Institut Jacques Monod, France
  2. Max Planck Institute of Molecular Cell Biology and Genetics, Germany

Abstract

Cell lineage, cell cycle, and cell fate are tightly associated in developmental processes, but in vivo studies at single-cell resolution showing the intricacies of these associations are rare due to technical limitations. In this study on the marine annelid Platynereis dumerilii, we investigated the lineage of the 4d micromere, using high-resolution long-term live imaging complemented with a live-cell cycle reporter. 4d is the origin of mesodermal lineages and the germline in many spiralians. We traced lineages at single-cell resolution within 4d and demonstrate that embryonic segmental mesoderm forms via teloblastic divisions, as in clitellate annelids. We also identified the precise cellular origins of the larval mesodermal posterior growth zone. We found that differentially-fated progeny of 4d (germline, segmental mesoderm, growth zone) display significantly different cell cycling. This work has evolutionary implications, sets up the foundation for functional studies in annelid stem cells, and presents newly-established techniques for live-imaging marine embryos.

Data availability

The following data sets were generated
    1. Ozpolat BD
    2. Handberg-Thorsager M
    3. Vervoort M
    4. Balavoine G
    (2017) Sample A - Z-stacks
    Available at Zenodo under a Creative Commons Attribution-Non Commercial-No Derivatives license.

Article and author information

Author details

  1. B Duygu Özpolat

    Institut Jacques Monod, Paris, France
    For correspondence
    dozpolat@gmail.com
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-1900-965X
  2. Mette Handberg-Thorsager

    Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
    Competing interests
    The authors declare that no competing interests exist.
  3. Michel Vervoort

    Institut Jacques Monod, Paris, France
    Competing interests
    The authors declare that no competing interests exist.
  4. Guillaume Balavoine

    Institut Jacques Monod, Paris, France
    For correspondence
    Guillaume.BALAVOINE@ijm.fr
    Competing interests
    The authors declare that no competing interests exist.

Funding

Labex Who am I (No.ANR-11-LABX-0071)

  • Michel Vervoort
  • Guillaume Balavoine

Agence Nationale de la Recherche (METAMERE no. ANR-12-BSV2-0021)

  • Michel Vervoort
  • Guillaume Balavoine

Agence Nationale de la Recherche (TELOBLAST no. ANR-16-CE91-0007)

  • B Duygu Özpolat
  • Michel Vervoort
  • Guillaume Balavoine

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Lilianna Solnica-Krezel, Washington University School of Medicine, United States

Version history

  1. Received: July 22, 2017
  2. Accepted: December 11, 2017
  3. Accepted Manuscript published: December 12, 2017 (version 1)
  4. Version of Record published: January 11, 2018 (version 2)

Copyright

© 2017, Özpolat et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,687
    views
  • 448
    downloads
  • 28
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. B Duygu Özpolat
  2. Mette Handberg-Thorsager
  3. Michel Vervoort
  4. Guillaume Balavoine
(2017)
Cell lineage and cell cycling analyses of the 4d micromere using live imaging in the marine annelid Platynereis dumerilii
eLife 6:e30463.
https://doi.org/10.7554/eLife.30463

Share this article

https://doi.org/10.7554/eLife.30463

Further reading

    1. Cell Biology
    2. Chromosomes and Gene Expression
    Lucie Crhak Khaitova, Pavlina Mikulkova ... Karel Riha
    Research Article

    Heat stress is a major threat to global crop production, and understanding its impact on plant fertility is crucial for developing climate-resilient crops. Despite the known negative effects of heat stress on plant reproduction, the underlying molecular mechanisms remain poorly understood. Here, we investigated the impact of elevated temperature on centromere structure and chromosome segregation during meiosis in Arabidopsis thaliana. Consistent with previous studies, heat stress leads to a decline in fertility and micronuclei formation in pollen mother cells. Our results reveal that elevated temperature causes a decrease in the amount of centromeric histone and the kinetochore protein BMF1 at meiotic centromeres with increasing temperature. Furthermore, we show that heat stress increases the duration of meiotic divisions and prolongs the activity of the spindle assembly checkpoint during meiosis I, indicating an impaired efficiency of the kinetochore attachments to spindle microtubules. Our analysis of mutants with reduced levels of centromeric histone suggests that weakened centromeres sensitize plants to elevated temperature, resulting in meiotic defects and reduced fertility even at moderate temperatures. These results indicate that the structure and functionality of meiotic centromeres in Arabidopsis are highly sensitive to heat stress, and suggest that centromeres and kinetochores may represent a critical bottleneck in plant adaptation to increasing temperatures.

    1. Cell Biology
    Wan-ping Yang, Mei-qi Li ... Qian-qian Luo
    Research Article

    High-altitude polycythemia (HAPC) affects individuals living at high altitudes, characterized by increased red blood cells (RBCs) production in response to hypoxic conditions. The exact mechanisms behind HAPC are not fully understood. We utilized a mouse model exposed to hypobaric hypoxia (HH), replicating the environmental conditions experienced at 6000 m above sea level, coupled with in vitro analysis of primary splenic macrophages under 1% O2 to investigate these mechanisms. Our findings indicate that HH significantly boosts erythropoiesis, leading to erythrocytosis and splenic changes, including initial contraction to splenomegaly over 14 days. A notable decrease in red pulp macrophages (RPMs) in the spleen, essential for RBCs processing, was observed, correlating with increased iron release and signs of ferroptosis. Prolonged exposure to hypoxia further exacerbated these effects, mirrored in human peripheral blood mononuclear cells. Single-cell sequencing showed a marked reduction in macrophage populations, affecting the spleen’s ability to clear RBCs and contributing to splenomegaly. Our findings suggest splenic ferroptosis contributes to decreased RPMs, affecting erythrophagocytosis and potentially fostering continuous RBCs production in HAPC. These insights could guide the development of targeted therapies for HAPC, emphasizing the importance of splenic macrophages in disease pathology.