A homozygous FANCM mutation underlies a familial case of non-syndromic primary ovarian insufficiency

  1. Baptiste Fouquet
  2. Patrycja Pawlikowska
  3. Sandrine Caburet
  4. Celine Guigon
  5. Marika Mäkinen
  6. Laura Tanner
  7. Marja Hietala
  8. Kaja Urbanska
  9. Laura Bellutti
  10. Bérangère Legois
  11. Bettina Bessieres
  12. Alain Gougeon
  13. Alexandra Benachi
  14. Gabriel Livera
  15. Filippo Rosselli
  16. Reiner A Veitia
  17. Micheline Misrahi  Is a corresponding author
  1. Faculté de médecine Paris Sud, France
  2. Université Paris Sud, France
  3. Université Paris Diderot, France
  4. Turku University Hospital, Finland
  5. Hôpital Necker-enfants malades, APHP, France
  6. Faculté de Médecine Laennec, France

Abstract

Primary Ovarian Insufficiency (POI) affects ~1% of women under forty. Exome sequencing of two Finnish sisters with non-syndromic POI revealed a homozygous mutation in FANCM, leading to a truncated protein (p.Gln1701*). FANCM is a DNA-damage response gene whose heterozygous mutations predispose to breast cancer. Compared to the mother's cells, the patients' lymphocytes displayed higher levels of basal and mitomycin C (MMC)-induced chromosomal abnormalities. Their lymphoblasts were hypersensitive to MMC and MMC-induced monoubiquitination of FANCD2 was impaired. Genetic complementation of patient's cells with wild-type FANCM improved their resistance to MMC re-establishing FANCD2 monoubiquitinationFANCM was more strongly expressed in human fetal germ cells than in somatic cells. FANCM protein was preferentially expressed along the chromosomes in pachytene cells, which undergo meiotic recombination. This mutation may provoke meiotic defects leading to a depleted follicular stock, as in Fancm-/- mice. Our findings document the first Mendelian phenotype due to a biallelic FANCM mutation.

Article and author information

Author details

  1. Baptiste Fouquet

    Hopital Bicetre, Faculté de médecine Paris Sud, Le Kremlin Bicetre, France
    Competing interests
    The authors declare that no competing interests exist.
  2. Patrycja Pawlikowska

    CNRS UMR8200, Université Paris Sud, Villejuif, France
    Competing interests
    The authors declare that no competing interests exist.
  3. Sandrine Caburet

    Molecular Oncology and Ovarian Pathologies, Institut Jacques Monod, Université Paris Diderot, Paris, France
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-7404-8213
  4. Celine Guigon

    CNRS, UMR 8251, INSERM, U1133, Université Paris Diderot, Paris, France
    Competing interests
    The authors declare that no competing interests exist.
  5. Marika Mäkinen

    Department of Clinical Genetics, Turku University Hospital, Turku, Finland
    Competing interests
    The authors declare that no competing interests exist.
  6. Laura Tanner

    Department of Clinical Genetics, Turku University Hospital, Turku, Finland
    Competing interests
    The authors declare that no competing interests exist.
  7. Marja Hietala

    Department of Clinical Genetics, Turku University Hospital, Turku, Finland
    Competing interests
    The authors declare that no competing interests exist.
  8. Kaja Urbanska

    CNRS UMR8200, Université Paris Sud, Villejuif, France
    Competing interests
    The authors declare that no competing interests exist.
  9. Laura Bellutti

    UMR967 INSERM, CEA/DRF/iRCM/SCSR/LDG, Université Paris Diderot, Paris, France
    Competing interests
    The authors declare that no competing interests exist.
  10. Bérangère Legois

    Institut Jacques Monod, Université Paris Diderot, Paris, France
    Competing interests
    The authors declare that no competing interests exist.
  11. Bettina Bessieres

    Department of Histology, Embryology and Cytogenetics, Hôpital Necker-enfants malades, APHP, Paris, France
    Competing interests
    The authors declare that no competing interests exist.
  12. Alain Gougeon

    UMR Inserm 1052, CNRS 5286, Faculté de Médecine Laennec, Lyon, France
    Competing interests
    The authors declare that no competing interests exist.
  13. Alexandra Benachi

    Department of Obstetrics and Gynaecology, Université Paris Sud, Clamart, France
    Competing interests
    The authors declare that no competing interests exist.
  14. Gabriel Livera

    UMR967 INSERM, CEA/DRF/iRCM/SCSR/LDG, Université Paris Diderot, Fontenay aux Roses, France
    Competing interests
    The authors declare that no competing interests exist.
  15. Filippo Rosselli

    CNRS UMR8200, Université Paris Sud, Villejuif, France
    Competing interests
    The authors declare that no competing interests exist.
  16. Reiner A Veitia

    Institut Jacques Monod, Université Paris Diderot, Paris, France
    Competing interests
    The authors declare that no competing interests exist.
  17. Micheline Misrahi

    Hopital Bicetre, Faculté de médecine Paris Sud, Le Kremlin Bicetre, France
    For correspondence
    Micheline.misrahi@aphp.fr
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-5379-8859

Funding

Fondation pour la Recherche Médicale (DEQ20150331757)

  • Baptiste Fouquet
  • Sandrine Caburet
  • Reiner A Veitia
  • Micheline Misrahi

Ligue Contre le Cancer

  • Patrycja Pawlikowska
  • Filippo Rosselli

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Human subjects: The study was approved by all the institutions involved. All participants gave informed consent for the study and the study was approved by the agence de Biomedecine (reference number PFS12-002).

Copyright

© 2017, Fouquet et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,512
    views
  • 411
    downloads
  • 69
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Baptiste Fouquet
  2. Patrycja Pawlikowska
  3. Sandrine Caburet
  4. Celine Guigon
  5. Marika Mäkinen
  6. Laura Tanner
  7. Marja Hietala
  8. Kaja Urbanska
  9. Laura Bellutti
  10. Bérangère Legois
  11. Bettina Bessieres
  12. Alain Gougeon
  13. Alexandra Benachi
  14. Gabriel Livera
  15. Filippo Rosselli
  16. Reiner A Veitia
  17. Micheline Misrahi
(2017)
A homozygous FANCM mutation underlies a familial case of non-syndromic primary ovarian insufficiency
eLife 6:e30490.
https://doi.org/10.7554/eLife.30490

Share this article

https://doi.org/10.7554/eLife.30490

Further reading

    1. Medicine
    2. Neuroscience
    Hyeonyoung Min, Yale Y Yang, Yunlei Yang
    Research Article

    It has been well documented that cold is an enhancer of lipid metabolism in peripheral tissues, yet its effect on central nervous system lipid dynamics is underexplored. It is well recognized that cold acclimations enhance adipocyte functions, including white adipose tissue lipid lipolysis and beiging, and brown adipose tissue thermogenesis in mammals. However, it remains unclear whether and how lipid metabolism in the brain is also under the control of ambient temperature. Here, we show that cold exposure predominantly increases the expressions of the lipid lipolysis genes and proteins within the paraventricular nucleus of the hypothalamus (PVH) in male mice. Mechanistically, by using innovatively combined brain-region selective pharmacology and in vivo time-lapse photometry monitoring of lipid metabolism, we find that cold activates cells within the PVH and pharmacological inactivation of cells blunts cold-induced effects on lipid peroxidation, accumulation of lipid droplets, and lipid lipolysis in the PVH. Together, these findings suggest that PVH lipid metabolism is cold sensitive and integral to cold-induced broader regulatory responses.

    1. Medicine
    Mitsuru Sugimoto, Tadayuki Takagi ... Hiromasa Ohira
    Research Article

    Background:

    Post-endoscopic retrograde cholangiopancreatography (ERCP) pancreatitis (PEP) is a severe and deadly adverse event following ERCP. The ideal method for predicting PEP risk before ERCP has yet to be identified. We aimed to establish a simple PEP risk score model (SuPER model: Support for PEP Reduction) that can be applied before ERCP.

    Methods:

    This multicenter study enrolled 2074 patients who underwent ERCP. Among them, 1037 patients each were randomly assigned to the development and validation cohorts. In the development cohort, the risk score model for predicting PEP was established via logistic regression analysis. In the validation cohort, the performance of the model was assessed.

    Results:

    In the development cohort, five PEP risk factors that could be identified before ERCP were extracted and assigned weights according to their respective regression coefficients: –2 points for pancreatic calcification, 1 point for female sex, and 2 points for intraductal papillary mucinous neoplasm, a native papilla of Vater, or the pancreatic duct procedures (treated as ‘planned pancreatic duct procedures’ for calculating the score before ERCP). The PEP occurrence rate was 0% among low-risk patients (≤0 points), 5.5% among moderate-risk patients (1–3 points), and 20.2% among high-risk patients (4–7 points). In the validation cohort, the C statistic of the risk score model was 0.71 (95% CI 0.64–0.78), which was considered acceptable. The PEP risk classification (low, moderate, and high) was a significant predictive factor for PEP that was independent of intraprocedural PEP risk factors (precut sphincterotomy and inadvertent pancreatic duct cannulation) (OR 4.2, 95% CI 2.8–6.3; p<0.01).

    Conclusions:

    The PEP risk score allows an estimation of the risk of PEP prior to ERCP, regardless of whether the patient has undergone pancreatic duct procedures. This simple risk model, consisting of only five items, may aid in predicting and explaining the risk of PEP before ERCP and in preventing PEP by allowing selection of the appropriate expert endoscopist and useful PEP prophylaxes.

    Funding:

    No external funding was received for this work.