A homozygous FANCM mutation underlies a familial case of non-syndromic primary ovarian insufficiency

  1. Baptiste Fouquet
  2. Patrycja Pawlikowska
  3. Sandrine Caburet
  4. Celine Guigon
  5. Marika Mäkinen
  6. Laura Tanner
  7. Marja Hietala
  8. Kaja Urbanska
  9. Laura Bellutti
  10. Bérangère Legois
  11. Bettina Bessieres
  12. Alain Gougeon
  13. Alexandra Benachi
  14. Gabriel Livera
  15. Filippo Rosselli
  16. Reiner A Veitia
  17. Micheline Misrahi  Is a corresponding author
  1. Faculté de médecine Paris Sud, France
  2. Université Paris Sud, France
  3. Université Paris Diderot, France
  4. Turku University Hospital, Finland
  5. Hôpital Necker-enfants malades, APHP, France
  6. Faculté de Médecine Laennec, France

Abstract

Primary Ovarian Insufficiency (POI) affects ~1% of women under forty. Exome sequencing of two Finnish sisters with non-syndromic POI revealed a homozygous mutation in FANCM, leading to a truncated protein (p.Gln1701*). FANCM is a DNA-damage response gene whose heterozygous mutations predispose to breast cancer. Compared to the mother's cells, the patients' lymphocytes displayed higher levels of basal and mitomycin C (MMC)-induced chromosomal abnormalities. Their lymphoblasts were hypersensitive to MMC and MMC-induced monoubiquitination of FANCD2 was impaired. Genetic complementation of patient's cells with wild-type FANCM improved their resistance to MMC re-establishing FANCD2 monoubiquitinationFANCM was more strongly expressed in human fetal germ cells than in somatic cells. FANCM protein was preferentially expressed along the chromosomes in pachytene cells, which undergo meiotic recombination. This mutation may provoke meiotic defects leading to a depleted follicular stock, as in Fancm-/- mice. Our findings document the first Mendelian phenotype due to a biallelic FANCM mutation.

Article and author information

Author details

  1. Baptiste Fouquet

    Hopital Bicetre, Faculté de médecine Paris Sud, Le Kremlin Bicetre, France
    Competing interests
    The authors declare that no competing interests exist.
  2. Patrycja Pawlikowska

    CNRS UMR8200, Université Paris Sud, Villejuif, France
    Competing interests
    The authors declare that no competing interests exist.
  3. Sandrine Caburet

    Molecular Oncology and Ovarian Pathologies, Institut Jacques Monod, Université Paris Diderot, Paris, France
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-7404-8213
  4. Celine Guigon

    CNRS, UMR 8251, INSERM, U1133, Université Paris Diderot, Paris, France
    Competing interests
    The authors declare that no competing interests exist.
  5. Marika Mäkinen

    Department of Clinical Genetics, Turku University Hospital, Turku, Finland
    Competing interests
    The authors declare that no competing interests exist.
  6. Laura Tanner

    Department of Clinical Genetics, Turku University Hospital, Turku, Finland
    Competing interests
    The authors declare that no competing interests exist.
  7. Marja Hietala

    Department of Clinical Genetics, Turku University Hospital, Turku, Finland
    Competing interests
    The authors declare that no competing interests exist.
  8. Kaja Urbanska

    CNRS UMR8200, Université Paris Sud, Villejuif, France
    Competing interests
    The authors declare that no competing interests exist.
  9. Laura Bellutti

    UMR967 INSERM, CEA/DRF/iRCM/SCSR/LDG, Université Paris Diderot, Paris, France
    Competing interests
    The authors declare that no competing interests exist.
  10. Bérangère Legois

    Institut Jacques Monod, Université Paris Diderot, Paris, France
    Competing interests
    The authors declare that no competing interests exist.
  11. Bettina Bessieres

    Department of Histology, Embryology and Cytogenetics, Hôpital Necker-enfants malades, APHP, Paris, France
    Competing interests
    The authors declare that no competing interests exist.
  12. Alain Gougeon

    UMR Inserm 1052, CNRS 5286, Faculté de Médecine Laennec, Lyon, France
    Competing interests
    The authors declare that no competing interests exist.
  13. Alexandra Benachi

    Department of Obstetrics and Gynaecology, Université Paris Sud, Clamart, France
    Competing interests
    The authors declare that no competing interests exist.
  14. Gabriel Livera

    UMR967 INSERM, CEA/DRF/iRCM/SCSR/LDG, Université Paris Diderot, Fontenay aux Roses, France
    Competing interests
    The authors declare that no competing interests exist.
  15. Filippo Rosselli

    CNRS UMR8200, Université Paris Sud, Villejuif, France
    Competing interests
    The authors declare that no competing interests exist.
  16. Reiner A Veitia

    Institut Jacques Monod, Université Paris Diderot, Paris, France
    Competing interests
    The authors declare that no competing interests exist.
  17. Micheline Misrahi

    Hopital Bicetre, Faculté de médecine Paris Sud, Le Kremlin Bicetre, France
    For correspondence
    Micheline.misrahi@aphp.fr
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-5379-8859

Funding

Fondation pour la Recherche Médicale (DEQ20150331757)

  • Baptiste Fouquet
  • Sandrine Caburet
  • Reiner A Veitia
  • Micheline Misrahi

Ligue Contre le Cancer

  • Patrycja Pawlikowska
  • Filippo Rosselli

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Human subjects: The study was approved by all the institutions involved. All participants gave informed consent for the study and the study was approved by the agence de Biomedecine (reference number PFS12-002).

Copyright

© 2017, Fouquet et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,493
    views
  • 409
    downloads
  • 68
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Baptiste Fouquet
  2. Patrycja Pawlikowska
  3. Sandrine Caburet
  4. Celine Guigon
  5. Marika Mäkinen
  6. Laura Tanner
  7. Marja Hietala
  8. Kaja Urbanska
  9. Laura Bellutti
  10. Bérangère Legois
  11. Bettina Bessieres
  12. Alain Gougeon
  13. Alexandra Benachi
  14. Gabriel Livera
  15. Filippo Rosselli
  16. Reiner A Veitia
  17. Micheline Misrahi
(2017)
A homozygous FANCM mutation underlies a familial case of non-syndromic primary ovarian insufficiency
eLife 6:e30490.
https://doi.org/10.7554/eLife.30490

Share this article

https://doi.org/10.7554/eLife.30490

Further reading

    1. Medicine
    Jeong-Oh Shin, Jong-Bin Lee ... Jin-Woo Kim
    Research Article

    This study investigates the effects of two parathyroid hormone (PTH) analogs, rhPTH(1-34) and dimeric R25CPTH(1-34), on bone regeneration and osseointegration in a postmenopausal osteoporosis model using beagle dogs. Twelve osteoporotic female beagles were subjected to implant surgeries and assigned to one of three groups: control, rhPTH(1-34), or dimeric R25CPTH(1-34). Bone regeneration and osseointegration were evaluated after 10 weeks using micro-computed tomographic (micro-CT), histological analyses, and serum biochemical assays. Results showed that the rhPTH(1-34) group demonstrated superior improvements in bone mineral density, trabecular architecture, and osseointegration compared to controls, while the dimeric R25CPTH(1-34) group exhibited similar, though slightly less pronounced, anabolic effects. Histological and TRAP assays indicated both PTH analogs significantly enhanced bone regeneration, especially in artificially created bone defects. The findings suggest that both rhPTH(1-34) and dimeric R25CPTH(1-34) hold potential as therapeutic agents for promoting bone regeneration and improving osseointegration around implants in osteoporotic conditions, with implications for their use in bone-related pathologies and reconstructive surgeries.

    1. Medicine
    2. Neuroscience
    Sophie Leclercq, Hany Ahmed ... Nathalie Delzenne
    Research Article

    Background:

    Alcohol use disorder (AUD) is a global health problem with limited therapeutic options. The biochemical mechanisms that lead to this disorder are not yet fully understood, and in this respect, metabolomics represents a promising approach to decipher metabolic events related to AUD. The plasma metabolome contains a plethora of bioactive molecules that reflects the functional changes in host metabolism but also the impact of the gut microbiome and nutritional habits.

    Methods:

    In this study, we investigated the impact of severe AUD (sAUD), and of a 3-week period of alcohol abstinence, on the blood metabolome (non-targeted LC-MS metabolomics analysis) in 96 sAUD patients hospitalized for alcohol withdrawal.

    Results:

    We found that the plasma levels of different lipids ((lyso)phosphatidylcholines, long-chain fatty acids), short-chain fatty acids (i.e. 3-hydroxyvaleric acid) and bile acids were altered in sAUD patients. In addition, several microbial metabolites, including indole-3-propionic acid, p-cresol sulfate, hippuric acid, pyrocatechol sulfate, and metabolites belonging to xanthine class (paraxanthine, theobromine and theophylline) were sensitive to alcohol exposure and alcohol withdrawal. 3-Hydroxyvaleric acid, caffeine metabolites (theobromine, paraxanthine, and theophylline) and microbial metabolites (hippuric acid and pyrocatechol sulfate) were correlated with anxiety, depression and alcohol craving. Metabolomics analysis in postmortem samples of frontal cortex and cerebrospinal fluid of those consuming a high level of alcohol revealed that those metabolites can be found also in brain tissue.

    Conclusions:

    Our data allow the identification of neuroactive metabolites, from interactions between food components and microbiota, which may represent new targets arising in the management of neuropsychiatric diseases such as sAUD.

    Funding:

    Gut2Behave project was initiated from ERA-NET NEURON network (Joint Transnational Call 2019) and was financed by Academy of Finland, French National Research Agency (ANR-19-NEUR-0003-03) and the Fonds de la Recherche Scientifique (FRS-FNRS; PINT-MULTI R.8013.19, Belgium). Metabolomics analysis of the TSDS samples was supported by grant from the Finnish Foundation for Alcohol Studies.