Automated cell type classification in intact tissues by single-cell molecular profiling

  1. Monica Nagendran
  2. Daniel P Riordan
  3. Pehr B Harbury  Is a corresponding author
  4. Tushar J Desai  Is a corresponding author
  1. Stanford University School of Medicine, United States

Abstract

A major challenge in biology is identifying distinct cell classes and mapping their interactions in vivo. Tissue-dissociative technologies enable deep single cell molecular profiling but do not provide spatial information. We developed a proximity ligation- in situ hybridization technology (PLISH) with exceptional signal strength, specificity, and sensitivity in tissue. Multiplexed data sets can be acquired using barcoded probes and rapid label-image-erase cycles, with automated calculation of single cell profiles, enabling clustering and anatomical re-mapping of cells. We apply PLISH to expression profile ~2,900 cells in intact mouse lung, which identifies and localizes known cell types, including rare ones. Unsupervised classification of the cells indicates differential expression of 'housekeeping' genes between cell types, and re-mapping of two sub-classes of Club cells highlights their segregated spatial domains in terminal airways. By enabling single cell profiling of various RNA species in situ, PLISH can impact many areas of basic and medical research.

Data availability

The following previously published data sets were used

Article and author information

Author details

  1. Monica Nagendran

    Department of Internal Medicine, Division of Pulmonary & Critical Care, Stanford University School of Medicine, Stanford, United States
    Competing interests
    Monica Nagendran, MN has filed a provisional patent for PLISH.(Application # 62/475,090).
  2. Daniel P Riordan

    Department of Biochemistry, Stanford University School of Medicine, Stanford, United States
    Competing interests
    Daniel P Riordan, DR has filed a provisional patent for PLISH. (Application # 62/475,090).
  3. Pehr B Harbury

    Department of Biochemistry, Stanford University School of Medicine, Stanford, United States
    For correspondence
    harbury@stanford.edu
    Competing interests
    Pehr B Harbury, PH has filed a provisional patent for PLISH. (Application # 62/475,090).
  4. Tushar J Desai

    Department of Internal Medicine, Division of Pulmonary & Critical Care, Stanford University School of Medicine, Stanford, United States
    For correspondence
    tdesai@stanford.edu
    Competing interests
    Tushar J Desai, TD has filed a provisional patent for PLISH. (Application # 62/475,090).
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-8794-5319

Funding

National Heart, Lung, and Blood Institute (5U01HL09999507)

  • Pehr B Harbury
  • Tushar J Desai

National Heart, Lung, and Blood Institute (1R56HL1274701)

  • Tushar J Desai

Stanford University School of Medicine (BIO-X IIP-130)

  • Pehr B Harbury
  • Tushar J Desai

Stanford University School of Medicine (ChEM-H)

  • Monica Nagendran
  • Pehr B Harbury
  • Tushar J Desai

Stanford University School of Medicine (Discovery Innovation Fund Award)

  • Pehr B Harbury

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: This study was performed in strict accordance with the recommendations in the Guide for the Care and Use of Laboratory Animals of the National Institutes of Health. All of the animals were handled according to approved institutional animal care and use committee (IACUC) protocols (#22988) of Stanford University. The protocol was approved by the Administrative Panel on Laboratory Animal Care (APLAC) of Stanford University. Every effort was made to minimize suffering.

Human subjects: Adult human lung was obtained from Stanford Healthcare with patient informed consent and consent to publish in strict accordance with protocol 18891, approved by the Institutional Review Board Administrative Panel on Human Subjects in Medical Research of Stanford University, in compliance with requirements for protection of human subjects.

Reviewing Editor

  1. Jay Rajagopal, Harvard University, United States

Publication history

  1. Received: July 19, 2017
  2. Accepted: January 9, 2018
  3. Accepted Manuscript published: January 10, 2018 (version 1)
  4. Version of Record published: February 7, 2018 (version 2)
  5. Version of Record updated: February 9, 2018 (version 3)

Copyright

© 2018, Nagendran et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 9,717
    Page views
  • 1,569
    Downloads
  • 56
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, Scopus, PubMed Central.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Monica Nagendran
  2. Daniel P Riordan
  3. Pehr B Harbury
  4. Tushar J Desai
(2018)
Automated cell type classification in intact tissues by single-cell molecular profiling
eLife 7:e30510.
https://doi.org/10.7554/eLife.30510

Further reading

    1. Cancer Biology
    2. Cell Biology
    Qiangqiang Liu et al.
    Research Article Updated

    DBC1 has been characterized as a key regulator of physiological and pathophysiological activities, such as DNA damage, senescence, and tumorigenesis. However, the mechanism by which the functional stability of DBC1 is regulated has yet to be elucidated. Here, we report that the ubiquitination-mediated degradation of DBC1 is regulated by the E3 ubiquitin ligase SIAH2 and deubiquitinase OTUD5 under hypoxic stress. Mechanistically, hypoxia promoted DBC1 to interact with SIAH2 but not OTUD5, resulting in the ubiquitination and subsequent degradation of DBC1 through the ubiquitin–proteasome pathway. SIAH2 knockout inhibited tumor cell proliferation and migration, which could be rescued by double knockout of SIAH2/CCAR2. Human tissue microarray analysis further revealed that the SIAH2/DBC1 axis was responsible for tumor progression under hypoxic stress. These findings define a key role of the hypoxia-mediated SIAH2-DBC1 pathway in the progression of human breast cancer and provide novel insights into the metastatic mechanism of breast cancer.

    1. Cell Biology
    Gina M LoMastro et al.
    Research Article

    Multiciliated cells (MCCs) are terminally differentiated epithelia that assemble multiple motile cilia used to promote fluid flow. To template these cilia, MCCs dramatically expand their centriole content during a process known as centriole amplification. In cycling cells, the master regulator of centriole assembly Polo-like kinase 4 (PLK4) is essential for centriole duplication; however recent work has questioned the role of PLK4 in centriole assembly in MCCs. To address this discrepancy, we created genetically engineered mouse models and demonstrated that both PLK4 protein and kinase activity are critical for centriole amplification in MCCs. Tracheal epithelial cells that fail centriole amplification accumulate large assemblies of centriole proteins and do not undergo apical surface area expansion. These results show that the initial stages of centriole assembly are conserved between cycling cells and MCCs and suggest that centriole amplification and surface area expansion are coordinated events.