Automated cell type classification in intact tissues by single-cell molecular profiling

  1. Monica Nagendran
  2. Daniel P Riordan
  3. Pehr B Harbury  Is a corresponding author
  4. Tushar J Desai  Is a corresponding author
  1. Stanford University School of Medicine, United States

Abstract

A major challenge in biology is identifying distinct cell classes and mapping their interactions in vivo. Tissue-dissociative technologies enable deep single cell molecular profiling but do not provide spatial information. We developed a proximity ligation- in situ hybridization technology (PLISH) with exceptional signal strength, specificity, and sensitivity in tissue. Multiplexed data sets can be acquired using barcoded probes and rapid label-image-erase cycles, with automated calculation of single cell profiles, enabling clustering and anatomical re-mapping of cells. We apply PLISH to expression profile ~2,900 cells in intact mouse lung, which identifies and localizes known cell types, including rare ones. Unsupervised classification of the cells indicates differential expression of 'housekeeping' genes between cell types, and re-mapping of two sub-classes of Club cells highlights their segregated spatial domains in terminal airways. By enabling single cell profiling of various RNA species in situ, PLISH can impact many areas of basic and medical research.

Data availability

The following previously published data sets were used

Article and author information

Author details

  1. Monica Nagendran

    Department of Internal Medicine, Division of Pulmonary & Critical Care, Stanford University School of Medicine, Stanford, United States
    Competing interests
    Monica Nagendran, MN has filed a provisional patent for PLISH.(Application # 62/475,090).
  2. Daniel P Riordan

    Department of Biochemistry, Stanford University School of Medicine, Stanford, United States
    Competing interests
    Daniel P Riordan, DR has filed a provisional patent for PLISH. (Application # 62/475,090).
  3. Pehr B Harbury

    Department of Biochemistry, Stanford University School of Medicine, Stanford, United States
    For correspondence
    harbury@stanford.edu
    Competing interests
    Pehr B Harbury, PH has filed a provisional patent for PLISH. (Application # 62/475,090).
  4. Tushar J Desai

    Department of Internal Medicine, Division of Pulmonary & Critical Care, Stanford University School of Medicine, Stanford, United States
    For correspondence
    tdesai@stanford.edu
    Competing interests
    Tushar J Desai, TD has filed a provisional patent for PLISH. (Application # 62/475,090).
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-8794-5319

Funding

National Heart, Lung, and Blood Institute (5U01HL09999507)

  • Pehr B Harbury
  • Tushar J Desai

National Heart, Lung, and Blood Institute (1R56HL1274701)

  • Tushar J Desai

Stanford University School of Medicine (BIO-X IIP-130)

  • Pehr B Harbury
  • Tushar J Desai

Stanford University School of Medicine (ChEM-H)

  • Monica Nagendran
  • Pehr B Harbury
  • Tushar J Desai

Stanford University School of Medicine (Discovery Innovation Fund Award)

  • Pehr B Harbury

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: This study was performed in strict accordance with the recommendations in the Guide for the Care and Use of Laboratory Animals of the National Institutes of Health. All of the animals were handled according to approved institutional animal care and use committee (IACUC) protocols (#22988) of Stanford University. The protocol was approved by the Administrative Panel on Laboratory Animal Care (APLAC) of Stanford University. Every effort was made to minimize suffering.

Human subjects: Adult human lung was obtained from Stanford Healthcare with patient informed consent and consent to publish in strict accordance with protocol 18891, approved by the Institutional Review Board Administrative Panel on Human Subjects in Medical Research of Stanford University, in compliance with requirements for protection of human subjects.

Copyright

© 2018, Nagendran et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 10,776
    views
  • 1,707
    downloads
  • 100
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Monica Nagendran
  2. Daniel P Riordan
  3. Pehr B Harbury
  4. Tushar J Desai
(2018)
Automated cell type classification in intact tissues by single-cell molecular profiling
eLife 7:e30510.
https://doi.org/10.7554/eLife.30510

Share this article

https://doi.org/10.7554/eLife.30510

Further reading

    1. Cell Biology
    2. Medicine
    Shuo He, Lei Huang ... Jinlong He
    Research Article

    Disturbed shear stress-induced endothelial atherogenic responses are pivotal in the initiation and progression of atherosclerosis, contributing to the uneven distribution of atherosclerotic lesions. This study investigates the role of Aff3ir-ORF2, a novel nested gene variant, in disturbed flow-induced endothelial cell activation and atherosclerosis. We demonstrate that disturbed shear stress significantly reduces Aff3ir-ORF2 expression in athero-prone regions. Using three distinct mouse models with manipulated Aff3ir-ORF2 expression, we demonstrate that Aff3ir-ORF2 exerts potent anti-inflammatory and anti-atherosclerotic effects in Apoe-/- mice. RNA sequencing revealed that interferon regulatory factor 5 (Irf5), a key regulator of inflammatory processes, mediates inflammatory responses associated with Aff3ir-ORF2 deficiency. Aff3ir-ORF2 interacts with Irf5, promoting its retention in the cytoplasm, thereby inhibiting the Irf5-dependent inflammatory pathways. Notably, Irf5 knockdown in Aff3ir-ORF2 deficient mice almost completely rescues the aggravated atherosclerotic phenotype. Moreover, endothelial-specific Aff3ir-ORF2 supplementation using the CRISPR/Cas9 system significantly ameliorated endothelial activation and atherosclerosis. These findings elucidate a novel role for Aff3ir-ORF2 in mitigating endothelial inflammation and atherosclerosis by acting as an inhibitor of Irf5, highlighting its potential as a valuable therapeutic approach for treating atherosclerosis.

    1. Cell Biology
    2. Genetics and Genomics
    Róża K Przanowska, Yuechuan Chen ... Anindya Dutta
    Research Article

    The six-subunit ORC is essential for the initiation of DNA replication in eukaryotes. Cancer cell lines in culture can survive and replicate DNA replication after genetic inactivation of individual ORC subunits, ORC1, ORC2, or ORC5. In primary cells, ORC1 was dispensable in the mouse liver for endo-reduplication, but this could be explained by the ORC1 homolog, CDC6, substituting for ORC1 to restore functional ORC. Here, we have created mice with a conditional deletion of ORC2, which does not have a homolog. Although mouse embryo fibroblasts require ORC2 for proliferation, mouse hepatocytes synthesize DNA in cell culture and endo-reduplicate in vivo without ORC2. Mouse livers endo-reduplicate after simultaneous deletion of ORC1 and ORC2 both during normal development and after partial hepatectomy. Since endo-reduplication initiates DNA synthesis like normal S phase replication these results unequivocally indicate that primary cells, like cancer cell lines, can load MCM2-7 and initiate replication without ORC.