Genome-wide mapping of sister chromatid exchange events in single yeast cells using Strand-seq

  1. Clémence Claussin
  2. David Porubský
  3. Diana CJ Spierings
  4. Nancy Halsema
  5. Stefan Rentas
  6. Victor Guryev
  7. Peter M Lansdorp
  8. Michael Chang  Is a corresponding author
  1. University Medical Center Groningen, Netherlands
  2. Terry Fox Laboratory, BC Cancer Agency, Canada

Abstract

Homologous recombination involving sister chromatids is the most accurate, and thus most frequently used, form of recombination-mediated DNA repair. Despite its importance, sister chromatid recombination is not easily studied because it does not result in a change in DNA sequence, making recombination between sister chromatids difficult to detect. We have previously developed a novel DNA template strand sequencing technique, called Strand-seq, that can be used to map sister chromatid exchange (SCE) events genome-wide in single cells. An increase in the rate of SCE is an indicator of elevated recombination activity and of genome instability, which is a hallmark of cancer. In this study, we have adapted Strand-seq to detect SCE in the yeast Saccharomyces cerevisiae. We provide the first quantifiable evidence that most spontaneous SCE events in wild-type cells are not due to the repair of DNA double-strand breaks.

Article and author information

Author details

  1. Clémence Claussin

    European Research Institute for the Biology of Ageing, University Medical Center Groningen, Groningen, Netherlands
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-0994-3596
  2. David Porubský

    European Research Institute for the Biology of Ageing, University Medical Center Groningen, Groningen, Netherlands
    Competing interests
    The authors declare that no competing interests exist.
  3. Diana CJ Spierings

    European Research Institute for the Biology of Ageing, University Medical Center Groningen, Groningen, Netherlands
    Competing interests
    The authors declare that no competing interests exist.
  4. Nancy Halsema

    European Research Institute for the Biology of Ageing, University Medical Center Groningen, Groningen, Netherlands
    Competing interests
    The authors declare that no competing interests exist.
  5. Stefan Rentas

    Terry Fox Laboratory, BC Cancer Agency, Vancouver, Canada
    Competing interests
    The authors declare that no competing interests exist.
  6. Victor Guryev

    European Research Institute for the Biology of Ageing, University Medical Centre Groningen, University Medical Center Groningen, Groningen, Netherlands
    Competing interests
    The authors declare that no competing interests exist.
  7. Peter M Lansdorp

    European Research Institute for the Biology of Ageing, University Medical Center Groningen, Groningen, Netherlands
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-7435-1071
  8. Michael Chang

    European Research Institute for the Biology of Ageing, University Medical Center Groningen, Groningen, Netherlands
    For correspondence
    m.chang@umcg.nl
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-1706-3337

Funding

European Research Council (Advanced Grant)

  • Peter M Lansdorp

Netherlands Organisation for Scientific Research (Vidi Grant 016.131.314)

  • Michael Chang

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2017, Claussin et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,212
    views
  • 397
    downloads
  • 30
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Clémence Claussin
  2. David Porubský
  3. Diana CJ Spierings
  4. Nancy Halsema
  5. Stefan Rentas
  6. Victor Guryev
  7. Peter M Lansdorp
  8. Michael Chang
(2017)
Genome-wide mapping of sister chromatid exchange events in single yeast cells using Strand-seq
eLife 6:e30560.
https://doi.org/10.7554/eLife.30560

Share this article

https://doi.org/10.7554/eLife.30560

Further reading

    1. Chromosomes and Gene Expression
    Carlos Moreno-Yruela, Beat Fierz
    Insight

    Specialized magnetic beads that bind target proteins to a cryogenic electron microscopy grid make it possible to study the structure of protein complexes from dilute samples.

    1. Chromosomes and Gene Expression
    Carmina Lichauco, Eric J Foss ... Antonio Bedalov
    Research Article

    The association between late replication timing and low transcription rates in eukaryotic heterochromatin is well known, yet the specific mechanisms underlying this link remain uncertain. In Saccharomyces cerevisiae, the histone deacetylase Sir2 is required for both transcriptional silencing and late replication at the repetitive ribosomal DNA (rDNA) arrays. We have previously reported that in the absence of SIR2, a de-repressed RNA PolII repositions MCM replicative helicases from their loading site at the ribosomal origin, where they abut well-positioned, high-occupancy nucleosomes, to an adjacent region with lower nucleosome occupancy. By developing a method that can distinguish activation of closely spaced MCM complexes, here we show that the displaced MCMs at rDNA origins have increased firing propensity compared to the nondisplaced MCMs. Furthermore, we found that both activation of the repositioned MCMs and low occupancy of the adjacent nucleosomes critically depend on the chromatin remodeling activity of FUN30. Our study elucidates the mechanism by which Sir2 delays replication timing, and it demonstrates, for the first time, that activation of a specific replication origin in vivo relies on the nucleosome context shaped by a single chromatin remodeler.