1. Chromosomes and Gene Expression
Download icon

Genome-wide mapping of sister chromatid exchange events in single yeast cells using Strand-seq

  1. Clémence Claussin
  2. David Porubský
  3. Diana CJ Spierings
  4. Nancy Halsema
  5. Stefan Rentas
  6. Victor Guryev
  7. Peter M Lansdorp
  8. Michael Chang  Is a corresponding author
  1. University Medical Center Groningen, Netherlands
  2. Terry Fox Laboratory, BC Cancer Agency, Canada
Research Article
  • Cited 10
  • Views 2,120
  • Annotations
Cite this article as: eLife 2017;6:e30560 doi: 10.7554/eLife.30560

Abstract

Homologous recombination involving sister chromatids is the most accurate, and thus most frequently used, form of recombination-mediated DNA repair. Despite its importance, sister chromatid recombination is not easily studied because it does not result in a change in DNA sequence, making recombination between sister chromatids difficult to detect. We have previously developed a novel DNA template strand sequencing technique, called Strand-seq, that can be used to map sister chromatid exchange (SCE) events genome-wide in single cells. An increase in the rate of SCE is an indicator of elevated recombination activity and of genome instability, which is a hallmark of cancer. In this study, we have adapted Strand-seq to detect SCE in the yeast Saccharomyces cerevisiae. We provide the first quantifiable evidence that most spontaneous SCE events in wild-type cells are not due to the repair of DNA double-strand breaks.

Article and author information

Author details

  1. Clémence Claussin

    European Research Institute for the Biology of Ageing, University Medical Center Groningen, Groningen, Netherlands
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-0994-3596
  2. David Porubský

    European Research Institute for the Biology of Ageing, University Medical Center Groningen, Groningen, Netherlands
    Competing interests
    The authors declare that no competing interests exist.
  3. Diana CJ Spierings

    European Research Institute for the Biology of Ageing, University Medical Center Groningen, Groningen, Netherlands
    Competing interests
    The authors declare that no competing interests exist.
  4. Nancy Halsema

    European Research Institute for the Biology of Ageing, University Medical Center Groningen, Groningen, Netherlands
    Competing interests
    The authors declare that no competing interests exist.
  5. Stefan Rentas

    Terry Fox Laboratory, BC Cancer Agency, Vancouver, Canada
    Competing interests
    The authors declare that no competing interests exist.
  6. Victor Guryev

    European Research Institute for the Biology of Ageing, University Medical Centre Groningen, University Medical Center Groningen, Groningen, Netherlands
    Competing interests
    The authors declare that no competing interests exist.
  7. Peter M Lansdorp

    European Research Institute for the Biology of Ageing, University Medical Center Groningen, Groningen, Netherlands
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-7435-1071
  8. Michael Chang

    European Research Institute for the Biology of Ageing, University Medical Center Groningen, Groningen, Netherlands
    For correspondence
    m.chang@umcg.nl
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-1706-3337

Funding

European Research Council (Advanced Grant)

  • Peter M Lansdorp

Netherlands Organisation for Scientific Research (Vidi Grant 016.131.314)

  • Michael Chang

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Lorraine Symington, Columbia University

Publication history

  1. Received: July 19, 2017
  2. Accepted: December 8, 2017
  3. Accepted Manuscript published: December 12, 2017 (version 1)
  4. Version of Record published: December 18, 2017 (version 2)

Copyright

© 2017, Claussin et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,120
    Page views
  • 302
    Downloads
  • 10
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Download citations (links to download the citations from this article in formats compatible with various reference manager tools)

Open citations (links to open the citations from this article in various online reference manager services)

Further reading

    1. Chromosomes and Gene Expression
    2. Structural Biology and Molecular Biophysics
    Laura Plassart et al.
    Research Article Updated

    Preventing premature interaction of pre-ribosomes with the translation apparatus is essential for translational accuracy. Hence, the final maturation step releasing functional 40S ribosomal subunits, namely processing of the 18S ribosomal RNA 3′ end, is safeguarded by the protein DIM2, which both interacts with the endoribonuclease NOB1 and masks the rRNA cleavage site. To elucidate the control mechanism that unlocks NOB1 activity, we performed cryo-electron microscopy analysis of late human pre-40S particles purified using a catalytically inactive form of the ATPase RIO1. These structures, together with in vivo and in vitro functional analyses, support a model in which ATP-loaded RIO1 cooperates with ribosomal protein RPS26/eS26 to displace DIM2 from the 18S rRNA 3′ end, thereby triggering final cleavage by NOB1; release of ADP then leads to RIO1 dissociation from the 40S subunit. This dual key lock mechanism requiring RIO1 and RPS26 guarantees the precise timing of pre-40S particle conversion into translation-competent ribosomal subunits.

    1. Chromosomes and Gene Expression
    Hiroaki Tachiwana et al.
    Tools and Resources

    In eukaryotes, histone variant distribution within the genome is the key epigenetic feature. To understand how each histone variant is targeted to the genome, we developed a new method, the RhIP (Reconstituted histone complex Incorporation into chromatin of Permeabilized cell) assay, in which epitope-tagged histone complexes are introduced into permeabilized cells and incorporated into their chromatin. Using this method, we found that H3.1 and H3.3 were incorporated into chromatin in replication-dependent and -independent manners, respectively. We further found that the incorporation of histones H2A and H2A.Z mainly occurred at less condensed chromatin (open), suggesting that condensed chromatin (closed) is a barrier for histone incorporation. To overcome this barrier, H2A, but not H2A.Z, uses a replication-coupled deposition mechanism. Our study revealed that the combination of chromatin structure and DNA replication dictates the differential histone deposition to maintain the epigenetic chromatin states.