A picorna-like virus suppresses the N-end rule pathway to inhibit apoptosis

  1. Zhaowei Wang
  2. Xiaoling Xia
  3. Xueli Yang
  4. Xueyi Zhang
  5. Yongxiang Liu
  6. Di Wu
  7. Yuan Fang
  8. Yujie Liu
  9. Jiuyue Xu
  10. Yang Qiu
  11. Xi Zhou  Is a corresponding author
  1. Wuhan University, China
  2. Wuhan Institute of Virology, Chinese Academy of Sciences, China

Abstract

The N-end rule pathway is an evolutionarily conserved proteolytic system that degrades proteins containing N-terminal degradation signals called N-degrons, and has emerged as a key regulator of various processes. Viruses manipulate diverse host pathways to facilitate viral replication and evade antiviral defenses. However, it remains unclear if viral infection has any impact on the N-end rule pathway. Here, using a picorna-like virus as a model, we found that viral infection promoted the accumulation of caspase-cleaved Drosophila Inhibitor of Apoptosis 1 (DIAP1) by inducing the degradation of N-terminal amidohydrolase 1 (NTAN1), a key N-end rule component that identifies N-degron to initiate the process. The virus-induced NTAN1 degradation is independent of polyubiquitylation but dependent on proteasome. Furthermore, the virus-induced N-end rule pathway suppression inhibits apoptosis and benefits viral replication. Thus, our findings demonstrate that a virus can suppress the N-end rule pathway, and uncover a new mechanism for virus to evade apoptosis.

Article and author information

Author details

  1. Zhaowei Wang

    State Key Laboratory of Virology, Wuhan University, Wuhan, China
    Competing interests
    The authors declare that no competing interests exist.
  2. Xiaoling Xia

    State Key Laboratory of Virology, Wuhan University, Wuhan, China
    Competing interests
    The authors declare that no competing interests exist.
  3. Xueli Yang

    State Key Laboratory of Virology, Wuhan University, Wuhan, China
    Competing interests
    The authors declare that no competing interests exist.
  4. Xueyi Zhang

    State Key Laboratory of Virology, Wuhan University, Wuhan, China
    Competing interests
    The authors declare that no competing interests exist.
  5. Yongxiang Liu

    State Key Laboratory of Virology, Wuhan University, Wuhan, China
    Competing interests
    The authors declare that no competing interests exist.
  6. Di Wu

    State Key Laboratory of Virology, Wuhan University, Wuhan, China
    Competing interests
    The authors declare that no competing interests exist.
  7. Yuan Fang

    State Key Laboratory of Virology, Wuhan University, Wuhan, China
    Competing interests
    The authors declare that no competing interests exist.
  8. Yujie Liu

    State Key Laboratory of Virology, Wuhan University, Wuhan, China
    Competing interests
    The authors declare that no competing interests exist.
  9. Jiuyue Xu

    State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
    Competing interests
    The authors declare that no competing interests exist.
  10. Yang Qiu

    State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
    Competing interests
    The authors declare that no competing interests exist.
  11. Xi Zhou

    State Key Laboratory of Virology, Wuhan University, Wuhan, China
    For correspondence
    zhouxi@wh.iov.cn
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-3846-5079

Funding

National Natural Science Foundation of China (No. 31522004)

  • Xi Zhou

National Natural Science Foundation of China (No. 31600126)

  • Zhaowei Wang

Academy of Medical Sciences (No. 31761130075)

  • Xi Zhou

National Basic Research Program of China (No. 2014CB542603)

  • Xi Zhou

National High-Tech R&D Program of China (No. 2015AA020939)

  • Xi Zhou

Strategic Priority Research Program of Chinese Academy of Sciences (No. XDPB0301)

  • Xi Zhou

Natural Science Foundation of Hubei Province (No. 2016CFA045)

  • Xi Zhou

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2017, Wang et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,348
    views
  • 512
    downloads
  • 19
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Zhaowei Wang
  2. Xiaoling Xia
  3. Xueli Yang
  4. Xueyi Zhang
  5. Yongxiang Liu
  6. Di Wu
  7. Yuan Fang
  8. Yujie Liu
  9. Jiuyue Xu
  10. Yang Qiu
  11. Xi Zhou
(2017)
A picorna-like virus suppresses the N-end rule pathway to inhibit apoptosis
eLife 6:e30590.
https://doi.org/10.7554/eLife.30590

Share this article

https://doi.org/10.7554/eLife.30590

Further reading

    1. Immunology and Inflammation
    Eugenio Antonio Carrera Silva, Juliana Puyssegur, Andrea Emilse Errasti
    Review Article

    The gut biome, a complex ecosystem of micro- and macro-organisms, plays a crucial role in human health. A disruption in this evolutive balance, particularly during early life, can lead to immune dysregulation and inflammatory disorders. ‘Biome repletion’ has emerged as a potential therapeutic approach, introducing live microbes or helminth-derived products to restore immune balance. While helminth therapy has shown some promise, significant challenges remain in optimizing clinical trials. Factors such as patient genetics, disease status, helminth species, and the optimal timing and dosage of their products or metabolites must be carefully considered to train the immune system effectively. We aim to discuss how helminths and their products induce trained immunity as prospective to treat inflammatory and autoimmune diseases. The molecular repertoire of helminth excretory/secretory products (ESPs), which includes proteins, peptides, lipids, and RNA-carrying extracellular vesicles (EVs), underscores their potential to modulate innate immune cells and hematopoietic stem cell precursors. Mimicking natural delivery mechanisms like synthetic exosomes could revolutionize EV-based therapies and optimizing production and delivery of ESP will be crucial for their translation into clinical applications. By deciphering and harnessing helminth-derived products’ diverse modes of action, we can unleash their full therapeutic potential and pave the way for innovative treatments.

    1. Immunology and Inflammation
    Graham L Barlow, Christian M Schürch ... Paul L Bollyky
    Research Article

    In autoimmune type 1 diabetes (T1D), immune cells infiltrate and destroy the islets of Langerhans — islands of endocrine tissue dispersed throughout the pancreas. However, the contribution of cellular programs outside islets to insulitis is unclear. Here, using CO-Detection by indEXing (CODEX) tissue imaging and cadaveric pancreas samples, we simultaneously examine islet and extra-islet inflammation in human T1D. We identify four sub-states of inflamed islets characterized by the activation profiles of CD8+T cells enriched in islets relative to the surrounding tissue. We further find that the extra-islet space of lobules with extensive islet-infiltration differs from the extra-islet space of less infiltrated areas within the same tissue section. Finally, we identify lymphoid structures away from islets enriched in CD45RA+ T cells — a population also enriched in one of the inflamed islet sub-states. Together, these data help define the coordination between islets and the extra-islet pancreas in the pathogenesis of human T1D.