A picorna-like virus suppresses the N-end rule pathway to inhibit apoptosis
Abstract
The N-end rule pathway is an evolutionarily conserved proteolytic system that degrades proteins containing N-terminal degradation signals called N-degrons, and has emerged as a key regulator of various processes. Viruses manipulate diverse host pathways to facilitate viral replication and evade antiviral defenses. However, it remains unclear if viral infection has any impact on the N-end rule pathway. Here, using a picorna-like virus as a model, we found that viral infection promoted the accumulation of caspase-cleaved Drosophila Inhibitor of Apoptosis 1 (DIAP1) by inducing the degradation of N-terminal amidohydrolase 1 (NTAN1), a key N-end rule component that identifies N-degron to initiate the process. The virus-induced NTAN1 degradation is independent of polyubiquitylation but dependent on proteasome. Furthermore, the virus-induced N-end rule pathway suppression inhibits apoptosis and benefits viral replication. Thus, our findings demonstrate that a virus can suppress the N-end rule pathway, and uncover a new mechanism for virus to evade apoptosis.
Article and author information
Author details
Funding
National Natural Science Foundation of China (No. 31522004)
- Xi Zhou
National Natural Science Foundation of China (No. 31600126)
- Zhaowei Wang
Academy of Medical Sciences (No. 31761130075)
- Xi Zhou
National Basic Research Program of China (No. 2014CB542603)
- Xi Zhou
National High-Tech R&D Program of China (No. 2015AA020939)
- Xi Zhou
Strategic Priority Research Program of Chinese Academy of Sciences (No. XDPB0301)
- Xi Zhou
Natural Science Foundation of Hubei Province (No. 2016CFA045)
- Xi Zhou
The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.
Copyright
© 2017, Wang et al.
This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.
Metrics
-
- 2,359
- views
-
- 511
- downloads
-
- 19
- citations
Views, downloads and citations are aggregated across all versions of this paper published by eLife.
Citations by DOI
-
- 19
- citations for umbrella DOI https://doi.org/10.7554/eLife.30590