AKT isoforms have distinct hippocampal expression and roles in synaptic plasticity

Abstract

AKT is a kinase regulating numerous cellular processes in the brain and mutations in AKT are known to affect brain function. AKT is indirectly implicated in synaptic plasticity, but its direct role has not been studied. Moreover, three highly related AKT isoforms are expressed in the brain, but their individual roles are poorly understood. We find in Mus musculus, each AKT isoform has a unique expression pattern in the hippocampus, with AKT1 and AKT3 primarily in neurons but displaying local differences, while AKT2 is in astrocytes. We also find isoform-specific roles for AKT in multiple paradigms of hippocampal synaptic plasticity in area CA1. AKT1, but not AKT2 or AKT3, is required for L-LTP through regulating activity-induced protein synthesis. Interestingly, AKT activity inhibits mGluR-LTD, with overlapping functions for AKT1 and AKT3. In summary, our studies identify distinct expression patterns and roles in synaptic plasticity for AKT isoforms in the hippocampus.

Article and author information

Author details

  1. Josien Levenga

    Institute for Behavioral Genetics, University of Colorado, Boulder, Boulder, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Helen Wong

    Institute for Behavioral Genetics, University of Colorado, Boulder, Boulder, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Ryan A Milstead

    Department of Integrative Physiology, University of Colorado, Boulder, Boulder, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Bailey N Keller

    Institute for Behavioral Genetics, University of Colorado, Boulder, Boulder, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Lauren E LaPlante

    Institute for Behavioral Genetics, University of Colorado, Boulder, Boulder, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Charles A Hoeffer

    Institute for Behavioral Genetics, University of Colorado, Boulder, Boulder, United States
    For correspondence
    charles.hoeffer@colorado.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-2036-0201

Funding

Alzheimer's Association (MNIRGDP-12-258900)

  • Charles A Hoeffer

Simons Foundation (SFARI 27444)

  • Charles A Hoeffer

National Institutes of Health (R01 NS086933)

  • Charles A Hoeffer

Linda Crnic Institute Seed Grant

  • Charles A Hoeffer

Sie Foundation

  • Josien Levenga

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: This study was performed in strict accordance with the recommendations in the Guide for the Care and Use of Laboratory Animals of the National Institutes of Health. All animals used in this study were handled according to the approved institutional animal care and use committee (IACUC) protocols (1311.02, 2541) of the University of Colorado-Boulder.

Copyright

© 2017, Levenga et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 4,684
    views
  • 771
    downloads
  • 79
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Josien Levenga
  2. Helen Wong
  3. Ryan A Milstead
  4. Bailey N Keller
  5. Lauren E LaPlante
  6. Charles A Hoeffer
(2017)
AKT isoforms have distinct hippocampal expression and roles in synaptic plasticity
eLife 6:e30640.
https://doi.org/10.7554/eLife.30640

Share this article

https://doi.org/10.7554/eLife.30640

Further reading

    1. Cell Biology
    2. Genetics and Genomics
    Keva Li, Nicholas Tolman ... UK Biobank Eye and Vision Consortium
    Research Article

    A glaucoma polygenic risk score (PRS) can effectively identify disease risk, but some individuals with high PRS do not develop glaucoma. Factors contributing to this resilience remain unclear. Using 4,658 glaucoma cases and 113,040 controls in a cross-sectional study of the UK Biobank, we investigated whether plasma metabolites enhanced glaucoma prediction and if a metabolomic signature of resilience in high-genetic-risk individuals existed. Logistic regression models incorporating 168 NMR-based metabolites into PRS-based glaucoma assessments were developed, with multiple comparison corrections applied. While metabolites weakly predicted glaucoma (Area Under the Curve = 0.579), they offered marginal prediction improvement in PRS-only-based models (p=0.004). We identified a metabolomic signature associated with resilience in the top glaucoma PRS decile, with elevated glycolysis-related metabolites—lactate (p=8.8E-12), pyruvate (p=1.9E-10), and citrate (p=0.02)—linked to reduced glaucoma prevalence. These metabolites combined significantly modified the PRS-glaucoma relationship (Pinteraction = 0.011). Higher total resilience metabolite levels within the highest PRS quartile corresponded to lower glaucoma prevalence (Odds Ratiohighest vs. lowest total resilience metabolite quartile=0.71, 95% Confidence Interval = 0.64–0.80). As pyruvate is a foundational metabolite linking glycolysis to tricarboxylic acid cycle metabolism and ATP generation, we pursued experimental validation for this putative resilience biomarker in a human-relevant Mus musculus glaucoma model. Dietary pyruvate mitigated elevated intraocular pressure (p=0.002) and optic nerve damage (p<0.0003) in Lmx1bV265D mice. These findings highlight the protective role of pyruvate-related metabolism against glaucoma and suggest potential avenues for therapeutic intervention.

    1. Cell Biology
    2. Immunology and Inflammation
    Alejandro Rosell, Agata Adelajda Krygowska ... Esther Castellano Sanchez
    Research Article

    Macrophages are crucial in the body’s inflammatory response, with tightly regulated functions for optimal immune system performance. Our study reveals that the RAS–p110α signalling pathway, known for its involvement in various biological processes and tumourigenesis, regulates two vital aspects of the inflammatory response in macrophages: the initial monocyte movement and later-stage lysosomal function. Disrupting this pathway, either in a mouse model or through drug intervention, hampers the inflammatory response, leading to delayed resolution and the development of more severe acute inflammatory reactions in live models. This discovery uncovers a previously unknown role of the p110α isoform in immune regulation within macrophages, offering insight into the complex mechanisms governing their function during inflammation and opening new avenues for modulating inflammatory responses.